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Abstract—Threat modelling is foundational to secure systems
engineering and should be done in consideration of the
context within which systems operate. On the other hand,
the continuous evolution of both the technical sophistication
of threats and the system attack surface is an inescapable
reality. In this work, we explore the extent to which real-
world systems engineering reflects the changing threat con-
text. To this end we examine the desktop clients of six widely
used end-to-end-encrypted mobile messaging applications to
understand the extent to which they adjusted their threat
model over space (when enabling clients on new platforms,
such as desktop clients) and time (as new threats emerged).
We experimented with short-lived adversarial access against
these desktop clients and analyzed the results with respect
to two popular threat elicitation frameworks, STRIDE and
LINDDUN. The results demonstrate that system designers
need to both recognise the threats in the evolving context
within which systems operate and, more importantly, to
mitigate them by rescoping trust boundaries in a manner
that those within the administrative boundary cannot violate
security and privacy properties. Such a nuanced understand-
ing of trust boundary scopes and their relationship with
administrative boundaries allows for better administration
of shared components, including securing them with safe
defaults.

1. Introduction

Threat modeling has become an integral part of secure
software development. Threat modeling is also a recom-
mended best practice by OWASP [1] and within Agile [2]
and DevOps processes [3]. Researchers have developed
similar frameworks to systematically analyze threats to
user privacy when developing software applications [4].
However, threat modeling should not be a one-off activity.
As threats evolve and new attacks come to light, develop-
ers must continuously reassess applications against these
emerging threats. Furthermore, adding new features to an
application creates new information flows, which in turn
can cause trust boundaries to shift (e.g., due to including
additional hardware or software components or third party
services). The recommended best practice is to do threat
modeling “little and often” [5].

In this paper, we analyze whether the threat models
that underpin security and privacy aspects of applications
evolve through space (as new features are added) and time
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Figure 1: Evolution of Threat Models

(as understanding of threats changes). We use the case
study of end-to-end-encrypted (E2EE) mobile messaging
applications (such as Signal 1 and WhatsApp) that have
found widespread uptake and adoption amongst users
aiming to protect the privacy of their communications and
mitigate large-scale surveillance [6], [7]. Most of these
messaging platforms have since launched their desktop
clients to make it easier for users to communicate across
multiple devices.

At the same time, security and privacy threats against
which users need to be protected have also evolved. For
instance, the mobile app messaging threat model was
largely predicated on an eavesdropper on the communi-
cation channel. However, research into intimate partner
violence has highlighted that abusers often utilize monitor-
ing technology or shared devices as a way to monitor and
exert control over the victim [8], [9]. In this scenario, the
threat actor is not remote and has direct physical access to
devices. Furthermore, for an abuse victim, the persistence
of the access, which may last long after they have left
their abuser, is of serious concern. There are other contexts
in which even short-lived access to a desktop client can
pose potential threats such as official searches by border
& customs, shared devices in households, corporate
managed devices so on and so forth.

Figure 1 represents a conceptualization of the impor-

1. We refer to the Signal messenger application here, rather than
the Signal protocol, and will continue to distinguish between the two
throughout the paper.



tance of evolving threat models over space and time. In
order to explore if this happens in practice, we systemati-
cally analyze six major E2EE messaging applications: Sig-
nal, WhatsApp, Element, Viber, Wickr Me, and Telegram.
We start from the original threat model (TM 1) of these ap-
plications, i.e., a mobile app client with a remote attacker.
We then develop threat models (TM 2) encompassing the
expanded feature space and understanding of threats with
respect to security (using the STRIDE threat modeling
approach [10]) and privacy (using the LINDDUN threat
modeling approach [4]). Using an experimental test setup,
we then simulate adversarial short-lived access to the
desktop clients of each of the six applications. We use any
resultant compromises to derive the net evolution (TM∆)
for each application. Our analysis shows the applications
evolve their threat model to varying degrees to mitigate the
threats resulting from such adversarial short-lived access.

We argue based on our investigation that threat models
(and hence protection mechanisms informed by them)
need to evolve in space and time as threats change. For
some desktop clients, TM∆ reveals their vulnerability
to spoofing, repudiation, information disclosure and el-
evation of privilege in the face of short-lived adversarial
access. These vulnerabilities, in turn, give rise to privacy
leakages: linkability of information and identifiability of
the communicating parties. Our analysis also highlights
that recognition of the change in threat context is useful
but not enough in itself unless backed by appropriate
countermeasures.

2. Background - E2EE Messaging Applica-
tions & Threat Frameworks

We summarize the key security properties of these
applications and their desktop clients in Table 1 followed
by the threat modelling frameworks STRIDE [10] and
LINDDUN [4].

2.1. E2EE Messaging Applications

1) Every installation is tied to a particular user
identity – namely, identity key IK. This identity
is then used as the root of trust to securely
communicate with other participants through the
service and to configure additional devices for the
same account.

2) There are ephemeral asymmetric key pairs known
as pre-keys, which are used to encrypt mes-
sages between communicating entities. The pub-
lic component of the pre-keys are communicated
to the server for other communicating entities
– this communication is signed by the private
component of the long term identity key pair. The
assumption is that only the owner of the account
has access to the private part of IK and thus
signed it.

3) Signal, WhatsApp, Element and Viber broadly
adhere to the Signal protocol’s Double Ratchet
algorithm [11], as shown in Table 1. Wickr Me
extends the foundation of identity as the root of
trust their adoption of the Wickr secure messag-
ing protocol [12]. Telegram is a MTProto 2.0
based messenger.

The desktop clients for E2EE apps also share some
common characteristics:

• Every user needs to have an account with their
primary device which is the mobile application
and the legitimate user is in control and possession
of the primary device.

• After standard installation of the desktop client for
any of the messaging application, when launched,
they generate their own identity key pair. This
identity key pair is distinct from the primary de-
vice identity key pair.

• The primary device scans the identity information
of the desktop client and they authenticate each
other. The desktop client proves legitimate owner-
ship of the identity key to the primary device. The
primary device then communicates to the corre-
sponding application server that the desktop client
is trusted and can communicate as the primary
device.

• The primary device retains a list of the linked
companion devices.

A common security assumption across all the E2EE ap-
plications we investigate is that account holders will be
able to keep their identity key and its corresponding secret
away from attackers.

2.2. Threat Modeling

STRIDE [10] is a widely known and utilized security
threat modeling approach. The system is modeled in the
form of Data flow Diagrams (DFDs) that capture the key
processes, data stores and data flows between them. Trust
boundaries delineate which partitions of the system are
assumed to be free from adversarial interference. Data
flows across trust boundaries and individual components
(processes and data stores) are then evaluated for their
susceptibility to six key threats: Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service,
and Elevation of privilege. This susceptibility is derived
through a negation of key security properties, respectively,
authentication, integrity, non-repudiation, confidentiality,
availability and authorization.

LINDDUN [4] follows a similar approach to STRIDE
but focuses on threats to privacy. The system is mod-
eled using DFDs. Then individual DFD elements and
data flows are evaluated for potential privacy threats:
Linkability, Identifiability, Non-repudiation, Detectabil-
ity, information Disclosure, content Unawareness and
Noncompliance. The threats are elicited through nega-
tion of key privacy properties, respectively, unlinkabil-
ity, anonymity/pseudonymity, plausible deniability, unde-
tectability/unobservability, confidentiality, content aware-
ness and policy/consent compliance.

3. Methodology

Choice of E2EE Applications. We selected appli-
cations that are generally widely used and are diverse in
how they establish trust between primary and companion
devices. The applications studied can be divided into two
broad categories: those that rely in some capacity on
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Applications Protocol Primary Device (Phone) Parameters Desktop Client

Signal Signal
Curve25519 Key pair – Long term
Identity Key
Curve25519 Key pair – Pre-Keys

Desktop ID authenticated by
primary device.
Can be used independently.

WhatsApp Signal
Curve25519 Key pair –
Long term Identity Key
Curve25519 Key pair – Pre-Keys

Desktop ID authenticated by
primary device
Can be used independently

Element
Olm-
Double Ratchet
Implementation

Curve25519 Key pair –
Long term Identity Key
Curve25519 Key pair – Pre-Keys

Desktop ID authenticated by
primary device.
Can be used independently.

Wickr Me Wickr Secure
Messaging Protocol

Curve P521 Key pairs
SHA-256 Device Identifier

Desktop ID authenticated
by primary device
Can be used independently.

Viber Double
Ratchet Implementation

Curve25519 Key pair –
Long term Identity Key

Desktop client authenticated
by primary device
Can be used independently.

Telegram
MTProto 2.0 –
Diffie
Hellman Implementation

Cloud chat – 2048 bit permanent key
Secret Chat –
DH keys between communicating entities.

Desktop ID authenticated
by primary device
Can be used independently.

TABLE 1: Properties of Popular Messaging Applications

the Signal protocol, and those that do not. For Signal-
based apps, we study two implementations of the Signal
protocol, Signal’s own messaging app and WhatsApp,
where Signal’s app is open-source while WhatsApp’s
implementation is closed-source. This allows us to gain
a comparative understanding of the trust establishment
(of companion devices by the primary device) between
Signal and WhatsApp (as both utilize the Signal E2EE
protocol as their foundation). As we note later in our
findings, there are noticeable differences between their
respective implementations. While not relying directly on
the Signal protocol, Viber and Element both make use of
the Double Ratchet algorithm in their implementations.
Viber differs from other implementations in the way the
Root ID is shared between the primary and companion
devices. We examine whether this affects the ability to
protect against threats from short-lived adversarial access.
Element is also noteworthy due to its decentralized nature
(i.e., it does not rely on a central communications server).
We investigate if this decentralization has any bearing
on trust establishment of the companion devices by the
primary devices.

We further study two messaging services, Wickr Me
and Telegram, which rely entirely on their own messag-
ing protocols. Wickr documentation indicates that device-
specific information is used in device enrollment. We
evaluate whether this design is sufficient to prevent silent
desktop cloning. Telegram uses a custom protocol which
distinguishes between “cloud” chats and “secret” chats.
The documentation does not discuss any measures for
forward secrecy post-compromise.

Creation of DFDs. We created DFDs (using Mi-
crosoft’s Threat Modeling Tool) for each app before and
after addition of the Desktop client by studying the secu-
rity properties in their documentation [6], [12]–[16] and
through our experiments (see Section 3.1). For example,
WhatsApp documentation explicitly states (page 25) [13]

“WhatsApp defines end-to-end encryption as
communications that remain encrypted from a
device controlled by the sender to one controlled
by the recipient, where no third parties, not even
WhatsApp or our parent company Facebook,
can access the content in between.”

Figure 2 depicts the DFD at time t1 and space S1 (cf.

Figure 1). Figures 3 and 4 show the DFD at time t2 and
space S2 (cf. Figure 1) where a desktop client has been
added by the apps.

Figure 2: DFD for Signal, WhatsApp, Element, Wickr Me,
Viber, and Telegram mobile applications.

Figure 3: DFD for Signal, WhatsApp, and Telegram desk-
top applications.

3.1. Experimental Setup

The experiments were conducted between test ac-
counts registered to phone numbers provided by pay-as-
you-go SIM cards purchased specifically for these exper-
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Figure 4: DFD for Element, Wickr Me and Viber desktop
applications.

iments. Account registration was performed using a Sam-
sung Galaxy A21 smartphone and iPhone SE which were
used to receive SMS messages required for registration.
The desktop clients were installed through the following
steps:

1) Hardware. The desktop clients were installed on
MacBook Pro laptops with 2 GHz Quad-Core
Intel Core i5 and 16GB 3733 MHz LPDDR4X
memory.

2) Launching the legitimate desktop client. We
started a legitimate desktop version of the appli-
cation through the required setup mechanism, for
example, by scanning a QR code.

3) Launching the attacker’s desktop client. We
performed a standard installation of the desk-
top client in an attacker’s machine, configured
with a second account, then copied the state
from the victim’s machine and placed it in
the attacker’s machine. Our goal was to eval-
uate if these systems have protections against
simple cloning attacks so we copied state in-
formation from ∼/Library/Application
Support/ of the victim’s machine to the same
directory of the attacker’s machine. The victim’s
machine and the attacker’s machine were of the
same specifications.

3.2. Testing for threats

STRIDE.

• Spoofing. We performed a standard installation of
the desktop client in an attacker’s machine, then
copied the state from the victim’s machine and
placed it in the attacker’s machine.

• Tampering. Our focus was on the end points
than the network. So we did not experiment with
altering message content while in transit.

• Repudiation. While we set up the attacker’s ma-
chine, we engaged in communication between the
legitimate participant, the attacker and other legit-
imate parties. This was repeated between the com-
municating entities to understand if the recipients
observe any difference while communicating with
the victim and the attacker.

• Information Disclosure. We used the cloned
desktop across space and time to understand the
implications on forward and backward secrecy.

• Denial of Service. We tested if the cloned machine
throws the victim out of the network or allows the
victim to continue sending and receiving messages
even when the clone is in operation.

• Elevation of privilege. This was tested by captur-
ing the credentials using a tls interceptor
from the rooted device. Then the victim’s desk-
top client was de-linked from the primary device.
Subsequently, the cloned desktop client was also
de-linked. Then we used the captured credentials
to restart the desktop client in the attacker’s device.

LINDDUN. We focused on identifiability and link-
ability as information disclosure and non-repudiation (vice
versa repudiation) were already evaluated as part of our
STRIDE analysis. Since our focus was on end points, we
did not perform analysis for detectability. Non-compliance
and unawareness are out of scope for us as the registration
processes for the messaging applications were based on
primary device credentials without any room for opting
out.

• Linkability. – The various artefacts from a victim
were checked if they link potential entities con-
nected to the victim.

• Identifiability. – We checked if those artefacts
revealed identifying information about the victims
and indirect entities connected to the victim.

We then analyzed the type(s) of data accessible
through potential threats. We then modeled these data
items as trees to depict the identifiability and linkability
of an entity.

4. Findings

We subject the desktop client to short-lived adversarial
access (TM2) to elicit the threats based on the tests
particular to elements of the threat as per STRIDE and
LINDDUN. Table 2 shows the threats which were not
scoped while expanding from S1 to S2 between time t1
and t2.

4.1. Signal Messenger

Signal messenger assumes that only an eavesdrop-
per can be or can attempt to be the mal-actor and im-
plements its authentication and key sharing mechanisms
accordingly. For any other mal-actors the expectation is
to replace the device and/or account. This was perhaps
appropriate for implementing the security property of au-
thentication because the secrets never left the user’s device
into the communication network. However, our experi-
ments show that such assumptions cannot sustain when
the potential mal-actors reside within the trust boundary
and adversarial short-lived access can go undetected.

An attacker can simply replace the configuration files
of a standard Signal desktop installation with the ver-
sions stolen from a victim’s machine. The specifics of
the attacker machine do not influence the success of the
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Applications Emerging Threats (TM∆)
S T R I D E L I N D D U N

Signal ✓ - ✓ ✓ × ✓ ✓ ✓ ✓ - ✓ - -
Whatsapp ✓ - ✓ ✓ × × ✓ ✓ ✓ - ✓ - -
Element × - × ✓ × × ✓ × × - ✓ - -

Wickr Me × - × × × × × × × - × - -
Viber × - × × × × × × × - × - -

Telegram ✓ - ✓ ✓ × × ✓ ✓ ✓ - ✓ - -

TABLE 2: (TM∆) based on STRIDE and LINDDUN threat models. In this table, (-) indicates not being tested; (×)
indicates attack not possible; and (✓) indicates attack is possible.

attack. For Signal mobile application, upon new instal-
lation (either due to compromised device or for other
reasons), the identity keys of the user change along with
the pre-keys. This will be reflected for all the contacts of
a particular account. A comparison between the legitimate
desktop version and the cloned desktop showed the same
keys against the sequence number of the pre-keys. This
shows that the DH ratchet is not effective at rendering the
cloned version obsolete after the existing key material is
exhausted. One caveat is that the attacker’s Signal desk-
top instance will work with delays or messages will be
dropped when the victim’s mirrored desktop installation is
actively online. Our observation was that it was dependent
on the session established either with the victim or the
attacker. The desktop client state information contains
private pre-key material that will let the attacker break
forward secrecy for the Signal account it represents.

TM∆ for Signal desktop client captured in Figure 6
reveals that it was not scoped for protection against spoof-
ing, repudiation, information disclosure, denial of service
and elevation of privilege with respect to STRIDE and
linkability and identifiability for LINDDUN.

Adhering to the (mobile app) threat model of ex-
ternal eavesdroppers betrays the reality where other
participants with access to the devices (for legitimate
reasons or due to proximity) might misuse such
access.

Figure 5: Linkability of an Entity due to cloning of a
device

4.2. WhatsApp

WhatsApp desktop clients consider malicious entities
other than an eavesdropper. However, our experiments
show that their protection mechanisms were not commen-
surate against such an adversary. An attacker with short-
lived access can steal the credentials and communicate as

Figure 6: Identifiability of an Entity due to cloning of a
device

the victim. However unlike Signal the key is not stored in
plain text. This has a bearing on re-configuring a stolen
desktop once it is de-linked from the primary device.
Another implementation improvement over Signal is that
all companion devices have an expiry date. WhatsApp
explicitly alerts the primary device for new companion
devices as well as existing companion devices in use.
While spoofing is possible similar to Signal, there are
implementation improvements which can limit the con-
sequences.

The messages are synchronized across devices, thus
compromising confidentiality. An attacker is able to send
and receive messages as the victim. This breaks forward
secrecy and the recipients are not able to distinguish if the
messages are from an attacker or the victim. Though there
is a limit in the form of expiry dates, yet there are privacy
consequences namely linkability and identifiability.

TM∆ for WhatsApp desktop client reveals that it was
not scoped for protection against spoofing, repudiation, in-
formation disclosure with respect to STRIDE and linkabil-
ity and identifiability for LINDDUN. However, WhatsApp
desktop client was scoped for protection against elevation
of privilege and denial of service through short-lived ad-
versarial access. The scoping for spoofing is a marginal
improvement over Signal desktop with the provision of
expiry dates and alert messages for companion devices.

The desktop client threat model though considers
that legitimate insiders can turn malicious but makes
strong assumptions on users’ ability to note and act
on warnings and protect themselves.

4.3. Viber

Our experiments show that Viber clones exited as
soon as they were launched. This is because Viber ex-
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plicitly pins the primary identity in the companion de-
vices—configuring the companion device transfers the
identity key pair to it. This is significant for both the
mobile application and the desktop client. Any device
willing to authenticate as a legitimate client needs to
be explicitly authorized by the primary device. Though
the state is stored in ∼/Library/Application
Support/Viber yet using the state requires to explicit
transfer of the primary identity key by the legitimate
owner. When communicating entities are authenticated
by each other without any interference of a man-in-the-
middle, the trusted session is identified with a green lock.
Any session otherwise is indicated with a red lock.

For Viber, TM∆ reveals that it was scoped for protec-
tion against spoofing, repudiation, information disclosure,
denial of service and elevation of privilege with respect to
STRIDE and linkability and identifiability for LINDDUN.

Viber appears well-scoped for the dynamic nature of
the threat landscape by explicitly mandating compan-
ion devices through a transfer of the mobile device
primary ID.

4.4. Wickr Me

The cloning attacks were not possible for Wickr Me
even when the victim’s state was set to remember pass-
word. This means that Wickr Me considered malicious
participants beyond just eavesdroppers. Their mobile mes-
saging application verifies the association of an identity
with their identity key pair and ephemeral key pairs. The
association between identity key pair and the identity
is managed by the Wickr app and is pinned with the
device, making it difficult for an attacker to authenticate
as a victim. To protect from an eavesdropper Wickr Me
encrypts server requests using a rotated shared secret using
AES 256 in CFB mode which is tunneled inside TLS.
The security property of pinning the identity and key pair
with the device also appears to be extended to the desktop
client.

TM∆ for Wickr Me reveals that it was scoped for
protection against spoofing, repudiation, information dis-
closure, denial of service and elevation of privilege with
respect to STRIDE and linkability and identifiability for
LINDDUN.

Wickr Me acknowledges the changing nature of
the threats from actors with access to the devices
and also opens the possibility to integrate robust and
verifiable bindings between cryptographic keys and
real world entities.

4.5. Element

The desktop client considers malicious participants be-
yond eavesdroppers (to a larger extent than WhatsApp) but
it still allows an attacker to find out who communicated
with whom and when through our cloning attacks. While
we moved the victim state to the attacker machine, the
attacker was able to fire up the desktop client. The attacker
however, was not able to send and receive messages and
could not connect to the server. The attacker could only
see the user names of the entities with whom the victim
communicated and when.

The mobile version of Element generates a secret key
pertaining to every user for a container particular to a
device which we believe they extended for their desktop
version. Matrix documentation states that they generate
keys per device and not per user and the keys are never
exported from the device [17]. The keys are not part of the
state that can be stolen and replicated in another device
through simple cloning attack. Though cloning is possible
in Element, it does not compromise forward and backward
secrecy. The ability to see who sent messages to whom
and when could lead to linkability between the victim
and their contacts. However, the message contents are
not exposed due to cloning so an attacker cannot gather
identifiable attributes of the communicating entities.

In case of Element, TM∆ reveals that the desktop
client was scoped for protection against spoofing, repudi-
ation, denial of service and elevation of privilege with
respect to STRIDE and identifiability for LINDDUN.
Element desktop client also appears to be scoped for
information disclosure for forward and backward secrecy
but not for linkability with respect to LINDDUN.

A cloning attack against Element reveals only the
identity of the communicating entities but lack of
access to the keys prevents an adversary from reading
the messages.

4.6. Telegram

The mobile application has a cloud-based chat and an
end-to-end secure chat, using MTProto 2.0. The protection
primitives assume that a user is in control of the device.
However, the desktop client’s state information can be
cloned through short-lived access and thus spoofed by
an adversary. It is difficult for a recipient to distinguish
between a legitimate sender and an attacker using a cloned
account.

In the case of Telegram secret chats, message ex-
changes are not synchronized across legitimate and cloned
devices. For secret chats, the client key pairs are replen-
ished after every 100 messages or after being in use for
more than a week. This is to prevent any compromise of
forward secrecy. Participants in a secret chat can initiate
key generation if and when they detect any compromise
of their keys. However attackers can also initiate secret
chats with contacts of the victim without the contacts or
the victim being able to detect it. The disclosure of contact
information leads to inferences about the contacts of the
victims and leads to identifying sensitive information.

TM∆ reveals that Telegram Desktop client was not
scoped for spoofing, repudiation, information disclosure
and denial of service with respect to STRIDE and link-
ability and identifiability for LINDDUN. The scoping
for spoofing was a marginal improvement over Signal
Desktop with the provision of multi-factor authentication
and passwords (as well as the option to set an automatic
logout after a period of time).

The adoption of the eavesdropper-only threat model
in a context where access to the account state infor-
mation is easier, leaves users vulnerable to cloning
attacks.
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Primary DeviceCompanion DeviceCloned Device

(a) Mal-actors within the trust boundary

Primary DeviceCompanion DeviceCloned Device

(b) Primary device only in trust bound-
ary

Primary DeviceCompanion DeviceCloned Device

(c) Mal-actors outside the trust bound-
ary

Figure 7: Placement of trust boundary (red line) with respect to administrative boundary (blue dotted line).

5. Threat modelling to align trust boundaries
with administrative boundaries

Distinct individual or collective entities function
within an administrative boundary — logical space (per-
sonal space, departments or organizations). System de-
signers evaluate threats within and across these admin-
istrative boundaries, specify security policies to counter
the threats and provision appropriate security controls to
implement these policies. The artefacts protected by secu-
rity controls are placed within a trust boundary in order
to mitigate particular threats. The key question that arises
is the extent to which trust and administrative boundaries
should align.

Mobile phones function within a administrative bound-
ary where sharing of devices is not a widely prevalent
reality. The threat model is focussed more on entities
external to the administrative boundary like eavesdroppers
and attackers in the middle. System designers accordingly
defined the security policies and mechanisms for their
mobile E2EE services to protect against such threat actors.
This is reflected in the trust boundary of the DFD in
Figure 2 pertaining to TM1, which contains the mobile
phone. In case of the desktop clients of the messaging
applications, TM2 represents scenarios where there is
a shift in the administrative boundary — external par-
ticipants in official environment or for statutory reasons
or domestic settings have easier access to the devices
with desktop clients. Threats can arise from otherwise
legitimate insiders turning malicious.

Our investigation captured in Figure 7 shows the
distinct positions of the trust boundary depending on
how companion devices can be fired up pertaining to
their corresponding user account. The security controls of
Signal messenger, WhatsApp and Telegram do not pre-
vent companion devices being set up without the primary
device. There can be companion devices cloned from an
initial companion device fired by the primary device —
allowing mal-actors with short-lived adversarial access to
do so. As we can observe from Figure 7a, this is because
the trust boundary includes legitimate insiders who can
turn malicious. For a comparative understanding we refer
to a scenario where the trust boundary situates with only
the mobile phone as in Figure 7b. Such a model would
result in usability load requiring frequent authorization by
the primary device to the secondary device. On the other
hand, the security controls for Viber, Element and Wickr
Me require that all companion devices are explicitly fired
by the primary device. The trust boundary as depicted
in Figure 7c includes the primary device and only those
desktop clients explicitly fired by the primary device. This
excludes any (potential malicious) insider who has short-
lived access to a desktop client.

Our investigation shows that re-evaluation of trust
boundaries in the light of TM∆ needn’t be a highly
resource intensive task. For instance, such re-evaluation
can build on lightweight interventions proposed in pre-
vious practice studies such as Weir et al. [18]. They
designed low cost practical support for development teams
— Developer Security Essentials. Among the proposed
interventions, threat assessment is one of the key yet low
cost and easy to implement intervention with the aid of
a facilitator. A specific output of the threat assessment
(at various stages) can be the evaluation of TM∆ with
respect to specific threat taxonomies. This in turn will
determine the security policies and controls to rescope the
trust boundaries of systems against any possible change
to their administrative boundaries.

6. Discussion

The E2EE messaging applications were initially de-
signed for mobile phones and the desktop clients followed
later on — mobile phone application continued to be the
root of trust for the desktop clients. A pertinent issue
is if ‘trust’ in the security of the mobile application is
enough to trust the security of the desktop clients. Can
the compromise of the desktop client, on the other hand,
lower the security of the mobile application account as
well? As our analysis shows, for some of the desktop
clients, the shared system state is open to compromise
due to short-lived adversarial access. Research in secure
systems development has considered the question of when
the security of the components is sufficient to trust the
larger system (i.e., the composability problem) [19].

Systems are designed with clear delineation of the
participants in the system. We learn from our investigation
of the desktop clients of the messaging applications that
some of them assume that these participants have fixed
behavior which does not change across space and time.
The manner in which applications respond to the change
in behavior of the participants determine the security
of the applications. Fail safe defaults has been a long
standing principle too [20] — participants with access to
devices should not be able to use the access maliciously.
However, there remains a need for further work to find
systematic ways to make fail-safety decisions [21] as well
as exploring new mechanisms for the suitability of deny
access as a fail safe default [22].

7. Related Work

Prior work has focused particularly on Telegram due to
its use of a custom protocol, and researchers have demon-
strated numerous attacks over the years on both the MT-

7



Proto protocol and its implementation [23], [24]. Most re-
cently, the Matrix protocol (which Element uses) suffered
several severe vulnerabilities in which a malicious actor
was able to break confidentiality of communications using
a compromised Matrix server [25]. Cremers et al. [26]
investigated practical post-compromise security measures
in the mobile clients and some desktop clients of the main
E2EE messaging platforms, finding that almost all clients
studied are vulnerable to some degree of cloning attack.

In this paper, we contribute to this area by analyz-
ing the problem from a threat modeling perspective. We
demonstrate that the problem arises from a lack of con-
sideration of threats across space and time. Evolution of
applications is a reality as is addition of new features.
However, rescoping of the trust boundary as both the
application and the understanding of threats evolves is crit-
ical to mitigating against emerging threats. Our analysis
of the delineation of trust and administrative boundaries
provides a basis for such rescoping and better administra-
tion of shared components, including securing them with
safe defaults.

8. Conclusion

Software is an intersection between its functional re-
quirements and their security implications, where func-
tionalities take a precedence. In our investigation, we
observe two contrasting ways in which desktop clients
deal with the threats they face. One set of applications
anticipate the possibility of client cloning and implement
various systems-level mitigation strategies, while a second
set puts the onus squarely on the user to prevent device
compromise in the first place. An additional observation
from our experiments is that the addition of a less secure
desktop client can substantially lower the security of the
mobile client. While most of the desktop clients are based
on the same or similar cryptographic primitives, their man-
ifest diversity is a reflection of their varying perceptions of
an attacker. The larger lesson here is that securing evolving
threats with assumptions made in a different context will
result in a mismatch leaving users exposed to attacks. We
make a case for nuanced and in-depth modelling of an
attacker in appropriate contexts as integral to the software
development lifecycle. Application features evolve – ex-
isting features are deprecated or updated and new ones
added – and so do threat models. Our key take away for
application designers is to not only do threat modeling
little and often but also to pay close attention to TM∆

when doing so.
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