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Research Article

Ethical, political and epistemic implications of machine
learning (mis)information classification: insights from an
interdisciplinary collaboration between social and data
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Ryan McConville c

aDepartment of Computer Science, University of Bristol, Bristol, United Kingdom; bSchool of Management,
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ABSTRACT
Machine learning (ML) classification models are becoming
increasingly popular for tackling the sheer volume and speed of
online misinformation. In building these models data scientists
need to make assumptions about the legitimacy and
authoritativeness of the sources of ‘truth’ employed for model
training and testing. This has political, ethical and epistemic
implications which are rarely addressed in technical papers.
Despite (and due to) their reported high performance, ML-driven
moderation systems have the potential to shape public debate
and create downstream negative impacts. This article presents
findings from a responsible innovation (RI) inflected collaboration
between science and technology studies scholars and data
scientists. Following an interactive co-ethnographic process, we
identify a series of algorithmic contingencies—key moments
during ML model development which could lead to different
future outcomes, uncertainties and harmful effects. We conclude
by offering recommendations on how to address the potential
failures of ML tools for combating online misinformation.
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Introduction

In recent years there has been a flurry of research on the automated detection of misin-
formation using Machine Learning (ML) techniques. Significant progress has been made
on developing ML models for the identification, early detection and management of
online misinformation,1 which can then be deployed at scale to assist human content
moderators (e.g. Hassan et al. 2017; Monti et al. 2019; Zhou, Wu, and Zafarani 2020).
The development of ML tools for content moderation has gained currency particularly
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among social media platforms like Facebook, Twitter, TikTok and YouTube not only
because of cost and time saving reasons but due to mounting regulatory pressure on plat-
forms to take responsibility for their role in the propagation of harmful content including
misinformation (CDEI 2021). In response to the overwhelming scale of misinformation –
notably in the context of the COVID-19 pandemic – and the limited capacity of human
moderation to address this, platforms have increasingly looked to the deployment of
automated models as standalone solutions requiring less or no human intervention
(CDEI 2021).

The artificial intelligence (AI) research community has broadly framed the problem as
one that can be tackled using ML-enabled classification models. These classify (or ‘label’),
with varying degrees of accuracy, the category to which a piece of online content belongs
– e.g. a claim that is labelled as being ‘factually true’, ‘false’ or ‘misleading’. The models
are trained on large datasets of various modalities (images, video, text or social media
metrics) containing human annotated2 samples of information labelled as being factually
correct or false (Torabi Asr and Taboada 2019; Groh et al. 2022). In order to advance the
state of the art, researchers strongly emphasise the need for more and higher quality data
to train and validate MLmodels. Several training datasets have been published to this end
containing collections of fake news articles, social media posts, fabricated images and
videos, or false claims along with labels about their truthfulness produced by researchers
or professional fact-checkers.3

Recent work in fair ML and critical data studies has started to examine the assump-
tions and practices surrounding the curation of training sets and their use in the con-
struction of ML models. Of note are discussions relating to ethical issues of
algorithmic discrimination, bias and unfairness (e.g. Binns et al. 2017; Jaton 2021;
Miceli et al. 2021; Selbst et al. 2019; Domínguez Hernández and Galanos 2023).
However, scant attention has been given to the epistemic assumptions and practices
that underlie ML models for misinformation identification and, associated with this,
their social, political and commercial entanglements. The prevailing rationale in develop-
ing such tools is that if fed with (large and good) enough data they will be able to produce
reliable, actionable evaluations of truthfulness, allowing users to tackle the problem of
misinformation in an automated, cost-effective manner.

The practice of constructing referential datasets – or ‘ground truths’ – used for bothmodel
training and performance measuring purposes is rooted in assumptions about the credibility
and trustworthiness of those data sources. These sources typically include corpora of ‘author-
itative knowledge’ and/or the outputs of professional fact-checking organisations, which are
implicitly assumed to be credible and can be used to benchmark what is deemed to be true –
or at least not false. Explanations about what counts as authoritative or reliable ground truths
and reflection on associated assumptions, limitations and ethical implications are rarely seen
in technical papers describing model development and application.

Our paper addresses this gap. We present findings from a responsible innovation (RI)
inflected collaboration between science and technology studies (STS) scholars and data
scientists developing ML tools to combat misinformation. This study was undertaken
as part of a cross-cutting RI workstream exploring the integration of RI frameworks
(Owen et al. 2013; EPSRC 2018) within a large interdisciplinary research Centre aimed
at researching and addressing online harms. Our collaboration focused on mobilising
the reflexivity and anticipatory dimensions of RI (Owen et al. 2013).
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Drawing on insights from social studies of science and using an interactive co-ethno-
graphic approach, our collaboration surfaced a series of algorithmic contingencies – key
moments during model development which could lead to different future outcomes,
uncertainties and even harmful effects. These in turn allowed us to co-develop insights
for the responsible development of ML tools for misinformation detection and manage-
ment. Our frame of contingencies departs from the calculus of fairness or data bias elim-
ination discussed in the literature to date (Selbst et al. 2019; Domínguez Hernández and
Galanos 2023). We advance that taking these contingencies seriously opens a space for
reflection, debate and the evaluation of the social value and potential harmful impacts
of these tools, as key goals for responsible innovation.

On the social construction of facts, facticity and fact-checking

Who gets to decide whether a conjecture or claim meets the quality and condition of
being a fact – i.e. establishes its facticity – is a contentious and contested matter. Redu-
cing the establishment of facticity to ‘checking’ and ‘verifying’ loses the richness and
complexity of fact construction as an inherently social process (Latour and Woolgar
1986). As scholars within the philosophy of science and social studies of science have
compellingly argued, facts are not constructed in a value-free vacuum: they are
crafted, contested and pondered against competing claims as they move within social
worlds. Facts are thus necessarily contingent to context, cultural norms, institutional
structures and power relations (Collins and Evans 2002; Haraway 2013; Jasanoff 2004;
Latour and Woolgar 1986). Not only this, but over time the social and historical circum-
stances on which the construction of a fact depends can become opaque and lost, see-
mingly ‘free from the circumstances of its production’ (Latour and Woolgar 1986,
103). In this shifting and contingent knowledge arena, the legitimacy of those who
warrant and assert claims and conjectures becomes key.

Legitimacy can be granted through credentialled expertise, reputation and social
acceptance (Yearley 1999). Relying on the authority of scientific expertise and reputable
journalism could well be one socially acceptable means for determining what one might
call ‘objective knowledge’. Feminist scholars have however warned against the objectivist
ideal of ‘science as neutral’ as it paradoxically ignores the forces that often shape knowl-
edge production –Western, male, and elite dominated funding institutions, research pri-
orities, special interest groups, etc. (Haraway 2013; Harding 1995). This observation is
not a relativist attack on expertise and science as an institution per se, but a call to
remain cautious about the often loose use of the language of ‘neutrality’ and ‘objectivity’
in public discourse (Harding 1995; Lynch 2017). We take this cautionary and critical
stance when examining how assumptions about (scientific) knowledge, expertise and fac-
ticity might become encoded in ML techniques aimed at labelling, sorting and managing
(mis)information.

While there are different computational approaches to combat misinformation, in this
article we focus primarily on efforts to leverage and automate the journalistic practice of
fact-checking through ML-based techniques (Hassan et al. 2017). In the last decade, pro-
fessional fact-checking has gained prominence for its role in seeking to promote truth in
public discourse, especially during times of elections and crises (e.g. wars and pan-
demics). To date, there exist hundreds of professional fact checkers around the world.4
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Modern data-driven fact-checking has increasingly been viewed as being vital to tackle
misinformation in the so called ‘post truth’ era (Carlson 2017). Social media companies,
and notably Meta (Facebook’s parent company), have partnered with professional fact-
checkers to combat the widespread misinformation problem (see Meta 2020). Not only
are fact-checkers entrusted with the moderation of dubious pieces of information flagged
as such by platforms’ algorithms, but their verdicts are used train and refine misinforma-
tion detection algorithms and ML models (CDEI 2021). The output and credibility of
professional fact-checking is usually taken at face value for these purposes. However,
as an inherently human activity, professional fact-checking is not immune to cognitive
and selection biases, subjectivity and ideological preferences, errors, and (geo)political
and commercial interests. Despite being presented as impartial and objective, fact-check-
ers are – like scientists – value-laden political actors engaging in epistemic practices:
establishing facticity and confronting lies (defined by them) in public discourse
(Graves 2017).

Fact-checking services have attracted some criticism over their methodologies due to,
for example, accusations of skewed selection of topics and claims, and the use of ambig-
uous terminology (Uscinski and Butler 2013; Stewart 2021). For instance, fact-checking
organisations often use vague or borderline phrases like ‘mostly true’ or ‘mostly false’ on
the basis that claims are not always verifiable with sufficient certainty as being simply
either ‘true’ or ‘false.’ These issues manifest in myriad ways; for instance as competing
or contentious verdicts between fact-checkers or shifting assessments of claims over
time, sometimes with serious consequences (Lim 2018; Nieminen and Sankari 2021).

Deceitful content and tactics are always evolving, but also, what constitutes a see-
mingly stable fact at a given point is contingent and may change over time, driven by
public debate or the emergence of new information (Marres 2018). The COVID-19 lab
leak controversy is a case in point. For the most part of 2020 the claim that COVID-
19 originated in a lab inWuhan, China, was widely dismissed byWestern media as a con-
spiracy and ‘fake news’. Early in 2021, growing calls to take the hypothesis seriously trig-
gered further investigations by the WHO and a swift change of narrative by fact-checkers
and the media (Thacker 2021). Amidst the controversy, Facebook automatically misla-
belled a news article critical of the WHO as ‘misinformation’, which was later corrected
after complaints of censorship by the news outlet (Sayers 2021). This episode shows that
while well intentioned, the practice of fact-checking can lead to ambivalences and false
positives which could in turn be blindly reproduced and spread by an algorithm.

Not only does the online misinformation ecosystem evolve quickly, but the experi-
ences and manifestations of misinformation differ vastly across cultures, idiosyncrasies,
languages and political realities (Prasad 2022; Seifert 2017). These ambiguities are not
trivial for the design of interventions, as research has shown that the publication of
fact-checks can have uneven effects on different audiences, depending on a person’s
beliefs or initial stance on the topic (Park et al. 2021; Walter et al. 2020). Furthermore,
correction efforts could have the backfiring effect of reinforcing entrenched beliefs and
the spread of misinformation due to the segregating dynamics of online epistemic com-
munities formed around shared politics and identities (Nyhan and Reifler 2010).

In pointing out the challenges involved with establishing the truth we do not seek
to undermine the value of expertise, journalism and fact-checking in public discourse.
Albeit inevitably partial and context-dependent, truth-seeking efforts such as
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fact-checking can still be of use in the fight against misinformation. However, we contend
that these practices and their normative claims warrant reflection and scrutiny, particu-
larly as they become scaled up and automated.

Methodology: an interdisciplinary responsible innovation collaboration

This article is the result of an interdisciplinary collaboration between data scientists
leading a research project (CLARITI) focused on the development of a ML model for
tackling online misinformation, and scholars affiliated with the field of science and tech-
nology studies (STS) (hereafter the ‘research team’). The collaboration was initiated as
part of a cross-cutting workstream within a large interdisciplinary research Centre in
the UK aimed at researching and addressing online harms.5 The ‘Responsible, Inclusive
and Ethical Innovation’ workstream aimed to embed Responsible Innovation practices
across the Centre, with a focus on interdisciplinary knowledge co-production. This work-
stream provided a direction, and importantly resources, for our collaboration, which was
a voluntary activity engaged by all parties. Our collaboration focused on mobilising the
reflexivity (first and second order), anticipatory and responsiveness dimensions of RI,
drawing on the AREA framework (Stilgoe, Owen, and Macnaghten 2013; Owen et al.
2013) formalised by the Centres’ funder, the UK Engineering and Physical Sciences
Research Council.

Our collaboration draws inspiration from the longstanding tradition in STS of
opening the world of scientists and black-boxed technical systems to scrutiny through
ethnographic accounts (Latour and Woolgar 1986; Pollock and Williams 2010). It
builds upon and contributes to previous efforts to integrate social, ethical and human
values considerations into processes of research, design and development (Schuurbiers
2011; Fisher, Mahajan, and Mitcham 2006; van den Hoven 2013)

While ethnography has been the archetypical tool of STS theory and intervention, in
this study we explicitly adopted a collaborative configuration of this approach by shifting
from an ethnographer/informer arrangement to a joint endeavour between social scien-
tists and data scientists (c.f. Forsythe 1993; Bieler et al. 2021). Collaborative ethnography
can be viewed as ‘an approach to ethnography that deliberately and explicitly emphasises
collaboration at every point in the ethnographic process, without veiling it – from project
conceptualisation, to fieldwork, and, especially, through the writing process. Collabora-
tive ethnography invites commentary from our consultants and seeks to make that com-
mentary overtly part of the ethnographic text as it develops’ (Lassiter 2005, 16 emphasis
in original). Our aim with this approach was then not only to enrich the process of critical
analysis of technical work through close observation, but to advance collective reflection
allowing for the co-development of ethical and responsible ML practices.

Our approach took the form of regular meetings within the research team over a
period of approximately 8 months. These were empirically focused on the development
of a ML model to detect online misinformation conducted over that same period. The
technical project was conducted by a team of data scientists (DSN and RM) and com-
prised a multimodal ML based study of misinformation on social media and, the devel-
opment of an ML model for misinformation detection, labelling and management. One
of the outcomes of the data science project was a ‘misinformation dataset’ (Nielsen and
McConville 2022) which intends to capture the diverse ways in which misinformation
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manifests on social media and which are used to train and validate the ML model. This
dataset contains roughly 13,000 claims (of which 95% are labelled as misinformation)
from 115 fact-checking organisations and, more than 20 million posts (‘tweets’) from
the Twitter platform related to these claims. Aside from capturing a sizeable amount
of the social media interactions associated with the claims, the dataset covers 41
languages and spans dozens of different newsworthy events (e.g. COVID-19, Israel-Pales-
tine conflicts) appearing on the platform over the course of a decade.

Our collaboration usefully coalesced around the schematisation of the process of
building the ML detection model (Figure 1) and the curation of the ground truth datasets
used to support this (see Findings). This process of visualisation allowed the social scien-
tists (ADH and RO) to understand and gain literacy in the technical details of the project,
the associated development activities and comparable work in the technical literature on
automatic misinformation detection.6 The collaboration combined interpretation, cri-
tique, self-critique and calls for action co-produced by the research team. We approached
this method iteratively, purposely surfacing technical and epistemic assumptions and
practices –more generally in the ML model development literature and more specifically
in the project itself. Co-authoring was found to be a productive process to support this,
allowing interpretative texts written initially by the social scientists to be checked and
expanded by the data scientists.

We acknowledge the limitations of our method in producing generalising claims
which are reflective of the research team’s specific concerns, experiences, practices
within a specific project and a limited subset of works in the literature.

Findings

In the following sections we describe the steps taken in the data science project to con-
struct the automated misinformation detection model. We use this as a tangible way to
critically examine epistemic assumptions and practices involved in the development of
ML tools for online misinformation detection.

Belowwe first describe and schematise (Figure 1) the steps in the construction of themodel
adopted in the project: (1) problem definition, (2) choice of inputs and outputs, (3) curation of
ground truth datasets and model training (i.e. ‘ground-truthing’), (4) model validation

Figure 1. Steps in the construction of a ML misinformation detection model. (1) Problem definition:
design of strategy based on hypotheses, definitions and theories about how to identify misinforma-
tion. (2) Selection of multimodal inputs and outputs to be included into the classification model. (3)
Ground-truthing: the ground truth dataset is used to train the model. A subset of the this is reserved
for model validation. (4) Model validation: a subset of the ground truth dataset is used to test the
model’s performance. Metrics of performance accompany the publication of classification models.
(5) Model deployment: model outputs inform online content moderation decisions such as
banning, downranking or flagging. The dotted arrows represent feedback loops between steps.
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(testing), and finally (5) deployment. The ML model developed here is in essence a classifier
algorithm that maps inputs (e.g. documents, videos, images) to outputs (e.g. true, false, other)
according to examples contained in an annotated ground truth dataset.

We then employ the notion of contingencies to interrogate the entanglements associ-
ated with each step in the model development, and the conditions that could alter the
actual or claimed utility of a model and lead to potentially deleterious consequences.
Harmful impacts could for example include legitimate information being wrongly cate-
gorised as misinformation (false positives) and subsequently leading to unfair censor-
ship; the amplification of objectionable or ambiguous truth assessments; or the
reinforcing of false beliefs by failing to identify misinformation (false negatives).

It is important to note that here we do not view biases as inherently negative; in fact,
they could be necessary for the purposes of tackling misinformation. For instance, using
expert sources such as scientists or reputable institutions to correct misinformation is a
form of socially acceptable bias which may prove effective even though experts are fallible
and may not always reach consensus on what is true of even what constitutes being a fact
(Latour and Woolgar 1986). Thus, our responsible innovation exercise is not aimed at
debiasing models or showing how to better locate facts and determine ‘truth’; in fact, it
highlights the difficulties of doing so via manual or computational approaches. We
instead illustrate the salience of various contingencies so that they are pondered reflexively
in the development and auditing of ML tools. In the following sections we examine these
contingencies in more detail, describing them first and locating each more specifically in
the context of the project’s research and development steps (Fig 1). (see sumary in Table 1).

Problem definition

The way misinformation is problematised shapes the strategy used to detect and identify
it as well as the data required and their structure. Within the AI/ML research community,
misinformation detection is generally framed as a task of classification whereby candidate
pieces of information are classified into discrete (sometimes binary) categories by a ML
model according to sensible evaluations of their truthfulness. These evaluations are
influenced and informed by existing empirical studies, theories and hypotheses about
what may constitute or signal the presence of misinformation. Categories like misinfor-
mation and truth in this sense are defined a-priori by the researchers and then translated
(formalised) into a ML model’s variables (see below) following different data-driven
strategies which could leverage e.g. a corpus of knowledge, writing style or patterns of
online content propagation (Gradoń et al. 2021). For example, ‘fake news’ – a popularised
idiom in the misinformation landscape – is typically defined as a type of misinformation
which is intentionally crafted, often with a political or financial interest. Based on that
hypothesis different indicators such as style of writing or other distinctive features
could be leveraged to single out and identify fake news from the analysed content (e.g.
social media posts). For example, Rashkin et al. (2017) developed a model that classifies
political statements and news based on linguistic features such as keywords or subjective
language that indicates signs of intent to deceive. In that case, the authors drew on pre-
vious empirical work, communication theory and hypotheses suggesting that ‘fake news
articles try to enliven stories to attract readers.’ Techniques of natural language proces-
sing are increasingly being used to support this.
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Another common strategy is to search for signs of misinformation (irrespective of
intent) by looking at its impact, particularly regarding what is distinctive about infor-
mation consumption patterns in comparison with those exhibited by legitimate, ‘truthful’
information. For instance, several studies have shown that false information online (e.g.
‘fake news’) tends to spread faster than verified information (Vosoughi, Roy, and Aral
2018). A model informed by such findings would rely on the assumption that social
media metrics such as likes, retweets or comments can reveal something about the
speed of consumption of falsehoods that could be used to infer the presence of misinfor-
mation (Monti et al. 2019).

In the CLARITI project, multiple hypotheses underpinned the construction of the
model which drew on previous studies, plausible assumptions or experiments conducted
by the researchers. These were (1) people interact differently with posts discussing mis-
information compared to posts discussing factually true information, in the sense of their
replies and retweets (Shu et al. 2020; Li et al. 2020a); (2) the images used when discussing

Table 1. A summary of cautions and contingencies in the development of ML misinformation
classification models and their implications.
Steps Cautions and contingencies Implications

Problem
definition

Researchers use different theories and
definitions of misinformation.

Problematisation relies on previous empirical
studies and experiments.

Researchers often use hypotheses of how
misinformation manifests online.

Misinformation and truth are conceptualised as
classifiable based on salient features and prior
knowledge.

Definitions and provisional hypotheses translate
into intractable variables and norms
embedded in a model.

Choice of inputs
and outputs

The identification of inputs (e.g. text, image, a
combination of both) and outputs (‘true’,
‘false’, ‘misleading’) is informed by a
combination of technical and cost factors for
accessing data.

Opportunity and feasibility constrain the choices
of variables and how the problem is abstracted
into a mathematical formalism.

Proxy variables may be used due to reduced cost
(e.g. humour as a signal of misinformation).

Ground-truthing Ground truth datasets are temporally contingent
and have diminishing returns vis à vis new
events.

Researchers might standardise labels to reduce
complexity.

Data annotation and labelling are susceptible to
errors, partiality and uncertainty (e.g.
factcheckers disagreeing on the verdict of a
claim).

Using fact-checks to curate datasets could
overrepresent debunked claims over truthful
claims.

Difficulty to check for claims relating to new
events.

Inconsistency among data sources leading to
loss of nuance or amplification of errors.

Models are better at recognising debunked
claims and less so at checking truths.

Selection biases influence what types of
information are worthy of checking and which
narratives are prioritised over others.

Model Validation Performance evaluations are only indicative of
novelty and progress among competing
models.

Benchmarks of performance against other
models could be used across content domains.

Performance metrics influence moderation
decisions such as censoring, downranking,
flagging pieces of information.

Model high performance can be a misleading
metric of a model’s utility in particular topics
and cultural contexts.

Model
deployment

Moderation decisions can be informed on
metrics of ML model performance.

A logic of scaling up could lead to blanket
decisions across cultures, locations,
idiosyncrasies, laws.

Utilitarian approach: some error or harm (false
positives and false negatives) is acceptable.

High performing models leading to less human
input.

Using high performance models as a solution
might underplay the responsibilities of
platforms.

Models could have uneven impacts across
different contexts.

Burden of algorithmic failures and harm shifted
away from platforms e.g. appealing processes
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misinformation are different to images used when discussing factually true information
(Jin et al. 2017); (3) users who are discussing misinformation tend to be different to those
discussing factually true information as adjudged by their followers, followees and posts
(Dou et al. 2021); (4) misinformation spreads faster on social media than factually true
claims (Vosoughi, Roy, and Aral 2018); (5) posts discussing misinformation tend to use
different hashtags to posts discussing factually true claims (Cui and Lee 2020; Li et al.
2020b); and (6) a classifier trained on data which is monolingual or monotopical will
not generalise to new languages and events (Han, Karunasekera, and Leckie 2020).

In sum, definitions, prior evidence and hypotheses (even if they are provisional) all
inform further steps in the construction of the model and thereby become nested in
the pipeline of development and which are only auditable if explained sufficiently in a
technical paper or documentation.

Choice of inputs and outputs

Once the problem is defined, it is formalised (or abstracted) into a mathematical function
with inputs and outputs so that it can then be operationalised computationally. The
choice of data inputs and outputs (also called target variables) for a ML model not
only reflects the researcher’s framing of the problem but also technical feasibility in
terms of what kind of data can be reliably and economically acquired and used at
scale. The formalisation of the problem and the availability of training data are in this
sense mutually constitutive; or as Selbst et al. (2019, 60) put it, ‘abstraction choices
often occur implicitly, as accidents of opportunity and access to data.’ For instance,
while most algorithmic techniques to date have used text as an input variable, misinfor-
mation is increasingly also contained in images, video, or can result from deliberately
mismatched combinations of text and images intended to deceive or lure users; hence
the growing interest in working with multimodal data, which was indeed also a
feature of the CLARITI project.

Lack of data is frequently mentioned in the literature as one of the biggest obstacles to
the detection of misinformation. This is a twofold issue. On the one hand, some social
networks make the acquiring of data more difficult (e.g. Meta) while others make this
somewhat easier (e.g. Twitter where academic access is 10 million tweets per month).
On the other hand, in order to use supervised ML models, online content needs to be
labelled to specific output categories e.g. as ‘true’, ‘false’, ‘misleading’, and so on (see
Ground-truthing below).

To get around the problem of general data scarcity, different forms of triangulation or
proxy data are often included in the mix of building blocks. It may, for example, be rela-
tively inexpensive to scrape social media sites for reactions or social engagement metrics
which could be used to detect the presence of misinformation. For example, Lee et al.
(2020) use sentiment analysis to quantify the ‘perplexity’ users express in their comments
to social media posts as a proxy of early signs of misinformation.

Because some models rely on statistical correlations between variables in lieu of causal
relations, they are susceptible to making spurious associations and are therefore prone to
failure. For instance, using data from satirical news as a source to identify fake news could
lead to wrong associations due to the presence of confounding variables such as humour
(Pérez-Rosas et al. 2018).
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Opportunity, resources and feasibility were key considerations within the CLARITI
project. The strategy was to use a feature-rich set of inputs containing as many modalities
as possible with the expectation that the combination of these could lead to better (i.e.
more accurate) predictions of misinformation. Given the problem was formulated as a
binary classification task, the outputs were defined as ‘factual’ and ‘misinformation’
and anything outside this dichotomy was categorised as ‘other’. The model ultimately
relied on annotated, multimodal data (i.e. texts and images) obtained from the Google
Fact Check Explorer7 as well as from Twitter which provides access to data about user
engagements with news. This was motivated by the ready availability of the data for
research purposes, but also because the widespread use of these sources in the automatic
misinformation detection research literature would make it easier to test how the current
effort would compare against existing models.

Ground-truthing

Having defined the strategy and the choice of inputs and outputs, the next step is to train
the ML model using a ground truth dataset as a referent of factual and non-factual infor-
mation. This process of ground-truthing is not a trivial act but requires the ML developer
to make normative choices as to what is an acceptable source of legitimate information
(Jaton 2021). As discussed above, a common and defensible approach to determining
ground truths is to defer to experts or authoritative sources of knowledge. For
example, Wikipedia, reputable news outlets, professional fact-checkers and ‘wisdom-
of-the-crowd’ have been variously used to build labelled datasets of categorised
(mis)information.

While using science-informed sources is seldom objectionable, there are still con-
ditioning factors. For instance, in some circumstances, deference to experts may be
unwarranted;8 and journalists might (unintendedly or not) publish data in a way that
is skewed and misleading (Lewis and Westlund 2015). For illustration, here we enumer-
ate some of the conditionalities and contingencies associated with ground truth datasets
based on fact-checking.

First, ground truths are highly contingent on timing and thus have diminishing returns.
This is because the online (mis)information environment is in constant flux. A model
trained on previously fact-checked information is likely to be more effective with
similar or comparable content and less so with whole new topics, themes and genres
of false content. As the COVID-19 lab leak controversy demonstrates, factual assess-
ments could shift dramatically over a short period of time. These shifts – which may
call for rectification – are not always adequately and consistently addressed by fact-
checkers such that they can be taken on board in updating an ML model.9 If left
unchecked, ambivalences in the training data could lead to the amplification of objec-
tionable results and potentially harmful false positives. Yet determining the impact of
ambivalences, let alone checking and correcting them, can be a challenging and costly
endeavour.

Another key conditionality of constructing ground truth datasets is the choice of labels
and labelling systems. This is particularly problematic when truth assessments are
expressed in ways that are ambiguous or subject to multiple interpretations. One of the
biggest challenges with using the work of fact-checkers as a source of ground truths is
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the lack of consistency among fact-checkers’ definitions, terminology and methodology,
particularly in cases where misinformation may not be blatant or obvious, but subtle and
nuanced. Different organisations use different types of labelling, including politically
charged phrasing (‘pants on fire’), borderline (‘mostly true’, ‘mostly false’) or detailed
assessments of claims when it comes to nuanced content which cannot be easily classified
as either true or false.

Such ambiguities inevitably demand data scientists interpret, standardise or develop
new labels from existing data. For instance, to tackle the issue with inconsistent labels
in the CLARITI project, the ML model was trained to classify the individual verdicts
into three categories: ‘factual’, ‘misinformation’ and ‘other’. The last category was
included to handle verdicts which were not conclusive, such as ‘not sure’ – the claims
whose verdicts belonged to the ‘other’ category were not included in the final dataset.
Training such a model requires labelled verdicts to be standardised even if this introduces
new ambiguities and loss of nuance. For example, ‘half true’ was categorised as ‘misin-
formation’. To mitigate these ambiguities, a decision was made in the project to only
include claims whose verdicts from the fact-checking organisations were unanimous.

Training data could also be skewed toward false claims. While fact-checkers attempt to
validate true information and attempt to promote factual content, much of their work is
focused on debunking falsehoods.10 This is reflected in the composition of the ground
truth datasets, for example, when they contain disproportionately more samples of false-
hoods, or only one label for ‘fully true’ and several ones for dubious content ranging from
‘mostly true’ to ‘blatantly false’. This issue can lead to misrepresentation of truthful
content (labelled as such) in datasets, which undermines the ability of a model to accu-
rately identify true statements (true negatives) and reduce false positives. The bias toward
false claims can be viewed as a technical problem of unbalanced data which developers
can address by attempting to diversify content and sources in the construction of the
dataset (Gravanis et al. 2019). However, balancing a dataset is not always a straightfor-
ward task. This was the case in the CLARITI project where the resulting dataset was
largely skewed towards claims belonging to the ‘misinformation’ category (∼95% of
the claims). A choice was made to not balance the two categories by including, e.g.
news articles from ‘trusted sources’, as this would both introduce more bias as well as
potentially polluting data from a different data distribution. In other words, in attempting
to balance the data, ML models could end up distinguishing between new and old data,
rather than distinguishing between factual and misleading claims, making the task
superficially easier yet futile.

Datasets bear human selection and cognitive biases. A crucial and difficult question for
the practice of fact-checking is which claims are eligible for assessment. Fact-checkers
necessarily incur selection biases when deciding which claims to check and which
ones to leave out. This is particularly controversial in the assessment of political discourse
where judgements are often passed on statements which may contain a mix of opinion
and verifiable facts. According to Uscinsky (2015), one of the perils of fact-checking is
the choice to assess ideologically charged claims or future predictions for factual accuracy
even when these can only be verified retrospectively or are not verifiable at all. Similarly,
selection biases might lead to uneven representation of content among fact-checking
organisations. For instance, a comparative study of two major fact-checking organis-
ations in the US found that not only did they rarely look at the same selection of
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statements but even when they did there was little agreement on how they scored ambig-
uous claims such as ‘mostly true’ or ‘mostly false’ (Lim 2018). Selection biases are not
only a source of uncertainty, but they normatively influence what types of information
are worthy of checking and which narratives, cultural norms and languages are priori-
tised over others (Duarte, Llanso, and Loup 2018).

Model validation

The merit and utility of a classification model is judged by its ability to accurately predict
human generated labels. Once a model is trained, its accuracy can be measured by com-
paring the resulting classifications against an unseen subset of the ground truth dataset.
For example, in the case of models using datasets with labels provided by fact-checkers,
100% accuracy on the test set will theoretically equate to the model correctly predicting
all the labels given by the fact-checker on data not seen by the model during the training
process.

This is a process of internal validation which is typically agnostic to how the model
functions in the world and the possibility of downstream harmful impacts. Performance
metrics (be they accuracy, precision, recall, and F1-score

11) are commonly used as indi-
cators of relative incremental progress within the field and are used for comparisons
against benchmarks of human decision-making or other competing algorithmic tech-
niques. However, these comparisons may be decontextualised; that is, based on
metrics alone without regard to the specific (thematic, temporal or cultural) domains
in which different models were trained and the qualitative differences between them.
Such decontextualisation can be misleading as a model trained on e.g. political misinfor-
mation, is likely to be inadequate to detect misinformation in the celebrity domain (Han,
Karunasekera, and Leckie 2020). Since accuracy metrics are not always indicators of good
model performance they could be deceiving, particularly in models using imbalanced or
unevenly represented datasets which still exhibit relatively high accuracy (Valverde-Alba-
cete and Peláez-Moreno 2014).

In the development of the CLARITI project’s ground truth dataset, diversity of the
data was deemed of high priority, as existing benchmarking datasets are biased
towards specific languages, topics or events. As the system sought to detect misinforma-
tion within unseen events, the dataset was not merely split at random into a training and
testing part. Instead, these splits were created according to distinct events, thus making
for more consistent evaluations, albeit substantially harder. Further, as mentioned above,
the dataset was heavily unbalanced (95% of the data belongs to the misinformation cat-
egory) which means an accuracy metric would not be very telling and therefore F1-scores
for the two categories were reported instead.

Despite their salient shortcomings, performance metrics have performative power12

because they create expectations around, and effectively vouch for, the value of an algor-
ithm. Whether, and how, to deploy an ML model can be informed by various metrics of
performance. For instance, if a model exhibits a relatively high level of accuracy in clas-
sifying fake content, this can be used as a justification for deploying a system without
human moderation. According to Pérez-Rosas et al. (2018) models with over 70% accu-
racy are generally considered as being as good as humans to identify fake news (to use the
authors’ term), yet they still have considerable room for errors.
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Metrics of accuracy, precision, recall and F1-score not only provide an opportunity for
granular performance evaluation, but they can crucially inform what specific actions can
be triggered by a model. For example, a model with high precision (low false positive)
and low recall (high false negative) may be deemed more useful in fully automated scen-
arios as, while it may miss many cases of misinformation, there will be more confidence
that those it detects will be correct. On the other hand, in scenarios with human moder-
ation, a model with lower precision, but higher recall, may be more useful as it will
retrieve more possible misinformation than the former model, albeit at the expense of
false positives, which can be corrected by human moderators.

Anticipating emergent issues during model deployment

There are several ways in which social media platforms implement misinformation
detection systems. They can either configure hybrid decision-support systems (e.g.
ML-assisted fact-checking) or operate as standalone, automated moderation systems
with no human input. In the case of Meta, content initially flagged by an algorithm as
potentially false is typically relayed to independent fact-checkers who will make decisions
on the veracity of the claim (CDEI 2021). This is a strenuous process requiring a great
deal of manual input to process the huge amount of content circulating on social
media, which leads platforms increasingly to rely on automation.13

Depending on the platform’s moderation policy, automated detection systems can
trigger specific corrective actions such as banning/flagging/downranking content or pro-
moting relevant verified information alongside deceitful posts (Gillespie 2020; Gorwa,
Binns, and Katzenbach 2020). One of the pitfalls of such corrective approaches – and
moderation policies at large – is that they are typically applied at global scale
(affecting billions of people) with little regard to different demographics and socio-pol-
itical contexts and in line with the company’s (shareholders’) interests and definitions of
what counts as being acceptable. Moreover, there is widespread evidence that major
social media platforms have facilitated the formation of online knowledge communities
where content is circulated and segregated based on shared politics and interests (Cinelli
et al. 2021; Sacco et al. 2021). Because of this, platform-wide corrective actions may not
only have disparate effects when used across different groups, languages and cultural con-
texts but paradoxically pose the risk of reinforcing false beliefs particularly amid those
online epistemic communities where the circulation of falsehoods or conspiracy theories
is more prevalent (Madraki et al. 2021; Nyhan and Reifler 2010).

Existing algorithmic techniques still have limited ability to account for nuances in
language, intent, cultural references, or sarcasm (Duarte, Llanso, and Loup 2018). This
makes algorithms highly fragile when it comes to ‘borderline’ or tricky cases but also vul-
nerable to being circumvented by the creators of false content who can emulate the style
of truthful sources or translate posts into other languages. Similarly, the overreliance on
seemingly high performing algorithms risks worsening issues of unjustified censorship
when content is wrongly identified as being false and is subsequently banned or down-
ranked. Performance metrics are often invoked to frame a complex social problem within
a logic of optimisation. If errors are low, platforms tend to dismiss them as negligible or
outweighed by the benefits of improved efficiency, thereby shifting the burden of errors
to an acceptable minority of affected users who are faced with appeal processes.14
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A perhaps more fundamental issue with the use of algorithmic misinformation detec-
tion is that it emphasises the role of individual consumers and producers of misinforma-
tion at the expense of downplaying the interests and responsibilities of major technology
companies. The business model of social media platforms is based on maximising the
time users spend on their platforms in order to generate advertising revenue. This is
achieved through opaque algorithms of personalisation and recommendation based on
people’s behaviour, demographics and preferences (Zuboff 2019). The attention
economy rewards the circulation of (and engagement with) content regardless of its
quality; and in fact, misinformation has been found to consistently receive widespread
attention and engagement in social media platforms (Edelson et al. 2021). One could
argue that the commercial incentive of platforms to maximise engagement is thus at
odds with the goal of meaningfully tackling the spread of misinformation and any
type of content that could lead to downstream harms.

Furthermore, there is a risk that automation is positioned as the only solution to the
spread of harmful content as it ensures efficient business as usual. While we recognise
that machine learning models can have promising benefits to deal with the scale of mis-
information, their development should not be viewed as a final solution to the problem
nor should they foreclose the broader debate around platform regulation and oversight.

Embedding responsible practices in algorithmic content moderation

Interdisciplinary interactions and collaborations between data scientists and social scien-
tists (from health and biological sciences to computing and robotics) are not new.
However, the initiation of such collaborations aimed at fostering reflexive and responsive
development of ML models in hand with the technical development is much rarer.

Our collaboration surfaces a series of contingent epistemic practices, institutional
commitments and socially constructed assessments of facticity that suggest there can
be no such thing as an impartial or neutral (mis)information classifier. The contingencies
associated with developing ML classification models evidence that multiple reasonable
strategies and outcomes are possible and that these are necessarily influenced by the sub-
jectivities and interests implicated in their development. Further, we emphasise that mis-
information detection algorithms are highly time sensitive: models using historic data
may quickly become obsolete especially in relation to new events. This makes it
difficult for ML models to maintain their utility unless they are routinely re-trained
with up-to-date information and attuned to changing moderation norms set by platforms
and regulatory bodies.

A constructive question arising from the contingencies outlined here is what measures
can be taken in the interest of harnessing the social value of algorithmic classification and
minimising any harmful effects. There is no straightforward procedure to establish what
the right outcomes might look like given that desired outcomes for platforms and regu-
lators, downstream harmful effects and social preferences toward misinformation might
be in conflict. For instance, while some might be in favour of reducing the volume of mis-
information online by maximising a model’s true positives with a tolerable error, others
will be disproportionally harmed by unfair censorship and undermined freedom of
expression resulting from misclassifications. Similarly, some would argue that people
have the right to share misinformation particularly if it is harmless, whereas potentially
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dangerous content could provide a justification for restrictions on freedom of expression.
Yet in practice, drawing boundaries between harmful/harmless content and the limits to
free expression is seldom a trivial exercise.

These are ongoing tensions which should not be rendered as solvable problems. Instead,
the question of how we might produce socially beneficial (‘good’ or ‘fair’) algorithmic tools
calls for careful attention to socio-technical, cultural, legal, political and epistemic consider-
ations. We suggest developers should endeavour to account for algorithmic contingencies
and sufficiently document the limitations of their creations. This implies a commitment to
openness and self-critical reflection, making the assumptions and the various human
choices throughout the stages of problem formulation, choice of variables, ground-truth-
ing, and model validation available for scrutiny and contestation by external observers and
taking their potential for harmful outcomes seriously. While this is an open research chal-
lenge, we offer some practical recommendations that emerged during our collaboration
aimed at engendering responsible innovation in this field.

(a) Reflexivity beyond datasets

Principled and defensible criteria such as relevance, authoritativeness, data structure
and timelines of truth assessments all provide a strong foundation for the curation
and use of ground truth datasets. There are already important ongoing efforts to
improve the transparency of datasets which are of relevance here (Gebru et al. 2021;
Geiger et al. 2020; Gilbert and Mintz 2019). However, we propose that accounting
for contingencies, particularly in politically sensitive scenarios, requires going beyond
considerations of data accuracy, reliability and quality to acknowledge the complex pro-
cesses of social construction which underpin and configure the development and use of
ML models.

A recent study by Birhane et al. (2022) showed that highly cited ML research has typi-
cally ascribed to values of performance, efficiency and novelty over considerations of
social needs, harms and limitations and that researchers frequently make implicit allu-
sions to the value neutrality of research. Insofar as developers outsource the assessments
of facticity to other actors and select particular topics or events as matters of concern, it
becomes more crucial to examine one’s own design choices, assumptions and methodo-
logical commitments which directly influence model development and that these are
made available for auditing purposes.

Misinformation classification is by necessity a value-laden practice with profound nor-
mative implications concerning the validity, quality, representativeness and legitimacy of
knowledge. Linking back to the efforts of feminist scholars in surfacing the politics of
knowledge production, we are reminded of the need to reject ‘view from nowhere’
ideals and practice reflexivity (Harding 1995; Suchman 2002). In the interpretative research
tradition, reflexivity has been a standard of academic rigor and credibility which is attained
through acknowledging prior biases, positionalities, experiences and prejudices impacting
researchers’ claims to knowledge. There is no reason why improving the credibility of
scientific endeavours through reflexivity should not extend to the development of
machine learning models. Indeed, reflexivity – a key dimension of responsible innovation
(Stilgoe, Owen, andMacnaghten 2013), and a recurring theme inmany papers published in
the current journal (e.g. Foley, Sylvain, and Foster 2022) – has begun to be invoked in
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numerous calls for more transparency and accountability in the field of data science at large
(D’Ignazio and Klein 2020; Tanweer et al. 2021; Miceli et al. 2021).

There remain a great deal of practical challenges with attaining the intended virtues of
reflexivity in organisational spaces fraught with multiple, conflicting logics such as uni-
versities (Owen et al. 2021). Despite this, we support a reflexive turn in data science and
recommend much needed further research in this direction. At the very least, a reflexive
and transparent approach should seek to avoid shifting the blame on the data and exter-
nal sources, acknowledge partiality (as opposed to deceptive attempts to debias) and the
distribution of collective responsibility within the actors and institutions involved in con-
structing and deploying a model. In order to surface algorithmic contingencies, we raise
the need for transparency reports that are accompanied by reflexive disclaimers about
developers’ methodological choices, problem statements, institutional affiliations and
sources of funding influencing data collection and model construction.

(b) Situated and timely evaluations

Mechanisms should be in place to adjust the behaviour of a model or even the decision as to
whether to deploy a model or not with regards to changing circumstances, information or
situated cultural norms, laws and regulations. For instance, changes in the terms of service
of a platform, or relevant local norms and regulations (e.g. GDPR) should be taken into
account along with dataset labels changing as a result of new information (e.g. fact checkers
changing their original decision). Equally, if a user deletes their post, this should be removed
from the training/test set. Thus, datasets, even if they do not collect any more data, do not
remain static – in fact they might decrease in size over time – as the training and test data
changes, the model performance will change. This would allow for some form of dynamic
and adaptive environment, where published models, their results and the specific role of
human moderation are continuously re-evaluated and verdict changes are reflected as
appropriate. Community benchmarks based on location, language and domain-specificity
are one way to encourage this. These evaluations should be consistent so that models are
assessed with attention to topicality, timing, context, language or different modalities of
content used. Benchmark tests, for instance, could be conducted against models trained
on data labelled by different fact-checkers to investigate the impact of potential political,
selection or cognitive biases in the outcomes of a model.

Calls for algorithmic audits and due diligence are now gaining traction in the AI ethics
debate, particularly in areas of application which have well-documented risks and harms
(Brown, Davidovic, and Hasan 2021). Less attention however has been given to appli-
cations that are positioned as socially beneficial and pressing such as content moderation.
In the case of misinformation in particular, further research is needed around how con-
ditioning factors such as fact-checkers’ political leanings, domain specialisms but also
local laws and specific political demands around truth and freedom of expression
could be factored into the mix of quantitative or qualitative algorithmic evaluations.

(c) Accounting for and communicating uncertainty

Acknowledging and responding to uncertainty is a key aspect of responsible innovation
(Stilgoe, Owen, and Macnaghten 2013). This is particularly critical in the case of machine
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learning algorithms, where uncertainty is an inherent property. ML researchers have
tried to understand and measure uncertainty in different ways (Hüllermeier and Waege-
man 2021; Bhatt et al. 2021). Qualitative, also called ‘epistemic’, uncertainty extends to
the lack of knowledge about the outputs of a model or ignorance on the part of the
decision maker about the innerworkings of a ML model. This type of uncertainty can
be a reflection of several factors that are baked into a model such as subconscious
biases, inaccuracies or gaps in the data, as well as discretionary forms of data reduction
or standardisation of labels that are sometimes carried out by developers. For instance,
while the temporary fix of omitting ambiguous verdicts (such as ‘half true’ or ‘mostly
false’) might reduce the burden for moderators and (superficially) increase accuracy, it
comes at the cost of uncertainty such as casting doubt on legitimate information,
doing away with important nuances in language, or leaving subtle misleading claims
unaddressed.

ML model construction is also invariably impacted by randomness, or what is known
by ML researchers as ‘aleatoric’ uncertainty. For instance, the data collection process
from a social media platform can be stochastic for various reasons – Twitter for
example provides only a sample of the stream of online posts for academic research
(thus two people searching for ‘coronavirus’ using that API may collect different
results and thus create a different dataset). Arbitrary decisions (such as only keeping a
subset of the available data) made throughout the data collection process are often not
completely documented and may thus be irreproducible.

Measuring and reporting the various forms of uncertainty in a model can be crucial
both for aiding human intervention and for increasing the overall transparency of the
system. While it might be challenging to comprehensively address all uncertainties,
some measures can be taken to help communicate it to others. Any quantitative measures
of uncertainty should be published in tandem with other metrics as part of the model
evaluation. This can not only help avoid overreliance on algorithms andminimise ambig-
uous outcomes by helping human moderators but also help the pondering of alternative
interventions such as adding context to ambiguous content or links to contrasting news.
In addition, the data collection systems themselves should be made public and available.
Even if not fully reproducible (due to the dynamic nature of social media platforms),
developers should provide complete auditable documentation on the data collection
process. This approach was indeed considered as a way forward in the CLARITI
project where the data collection system that was used was made available on GitHub
(Nielsen and McConville 2022) so others can see and execute the exact code used to
build the dataset, and thus all decisions that were made.

Conclusion

Through an interdisciplinary RI collaboration, we have collectively and critically
reflected on emerging efforts to identify and manage online misinformation at scale
using machine learning classification models. In doing so we have identified contingen-
cies and insights to support a more reflexive and responsible development of these tools.
The development and widespread use of automated misinformation detection systems
raise pressing political, epistemic and ethical issues. We argue that, albeit promising
developments, these tools are highly contingent on the epistemic status of their
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ground truths, and the assumptions, choices and definitions underpinning tool develop-
ment, the contexts within which they are deployed and the interests of powerful actors in
vetting the circulation of information online.

We laid out a series of contingencies across the different stages in the construction of
these models and assessed how assumptions of expertise and legitimacy, ideological
biases, and commercial and (geo)political interests may influence the normative out-
comes of models which are predicated as being robust, accurate and high performing.
We note that while our analysis is grounded on a specific issue tackled by ML, similar
concerns are likely to hold true in other areas, particularly in the moderation of hate
speech and violent content. This marks paths of future inquiry where our analytical
approach could be used to interrogate the epistemologies and forces driving other algo-
rithmic systems.

Our study exemplifies an attempt to integrate RI in a project within a major research
centre, bringing social sciences methods and theory into conversation with those of data
science. We reflect on the methodological learning from the collaboration in terms of
practicing RI in a companion paper to the present study (Domínguez Hernández and
Owen forthcoming). Therein we highlight (a) the value of collective self-critique as a
key step in moving to action within responsible innovation collaborations; (b) the impor-
tance of gaining technical literacy for the innovation under consideration, facilitating a
move from initial ‘strategic vagueness’ in the early stages of the collaboration to a
more technically informed critical synthesis with the identification of tangible insights
and recommendations, and (c) employing co-authorship as a practice that productively
supports knowledge co-creation across disciplines.

We hope our contribution sparks further exploration of how data scientists and social
scientists can work together so as to break with longstanding, yet unproductive, divisions
of labour when research questions seem to fall out of the remit of one discipline or the
other (Moats and Seaver 2019; Sloane and Moss 2019). In considering the wealth of lit-
erature on RI, STS, critical algorithm studies and AI ethics, we also recognise that pre-
vious learning cannot be taken as being readily intelligible and applicable to those
expected to apply said learning and therefore that in-situ inquiries are imperative. We
thus approached this study in an open-ended and co-productive fashion, conducting
iterative cycles of observation, interpretation, validation and calibration among the
research team. We call for further experimentation of this type that supports the embed-
ding of RI within data and computational sciences and widens the audience and genres of
contributions in RI.

Notes

1. While several terms related to misinformation (e.g., disinformation and fake news) are used
throughout this paper, the term misinformation, in its broadest sense, is preferred for analy-
sis as it encompasses any type of misleading or false content presented as factual, regardless
of intent.

2. Machine learning algorithms allow computers to ‘learn’ based on examples derived from
data. This process demands human labour—in what is known as supervised ML—to
develop training and testing datasets containing pieces of information typically annotated
by humans.

3. A non-exhaustive list of datasets is found on D’Ulizia et al. (2021)
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4. A database of global fact-checking websites has identified more than 300 (Reporter’s Lab
2022)

5. The National Research Centre on Privacy, Harm Reduction and Adversarial Influence
Online REPHRAIN.

6. We note that some of the technical papers reviewed here are at the time of writing still in
preprint form, which is instructive of the faster pace of AI development compared with
the academic peer review and publication cycles.

7. This service aggregates claims which have been fact-checked by eligible news organisations.
To be included in Google’s fact check tool, news organisations need to comply with Google’s
standards for publishers and content policies (Google 2023).

8. An illustration of this is what Rietdijk and Archer (2021) problematise as ‘false balance’ in
journalism. This issue has been particularly salient in the debate around climate change,
where journalists have given disproportionate attention to a minority of climate sceptics
within the scientific community, who may also qualify as experts, in their efforts to show
both sides of the debate.

9. For example, PolitiFact, a well-known fact-checker organisation, decided to archive their
original assessment on the COVID lab leak controversy by removing it from their database
and revising their assessment as ‘widely disputed’ (see PolitiFact 2021)

10. Some fact-checking organisations focus exclusively on false and misleading claims (e.g.,
factcheck.org)

11. Here accuracy is the proportion of the model’s predictions which are correct, recall is the
proportion of the positive samples which the model correctly predicted, precision is the pro-
portion of the model’s positive predictions which are correct. The F1-score is the harmonic
mean of the recall and precision, which implies that if one of these two metrics are low then
the F1-score will be correspondingly low as well.

12. The concept of language performativity is used here in the same sense as within language
anthropology, gender studies and sociology of expectations. A claim or statement is
thought of as performative insofar as it constitutes and act which has an effect in the
world (see Borup et al. 2006; Hall 1999).

13. This recursive feedback loop involving algorithms and humans influencing one another
introduces yet further contingencies, however we do not have space here to explore these
in detail.

14. As admitted by YouTube’s representative: ‘One of the decisions we made [at the beginning
of the pandemic] when it came to machines who couldn’t be as precise as humans, we were
going to err on the side of making sure that our users were protected, even though that
might have resulted in a slightly higher number of videos coming down.’ (Neal Mohan
quoted in Barker and Murphy 2020)
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