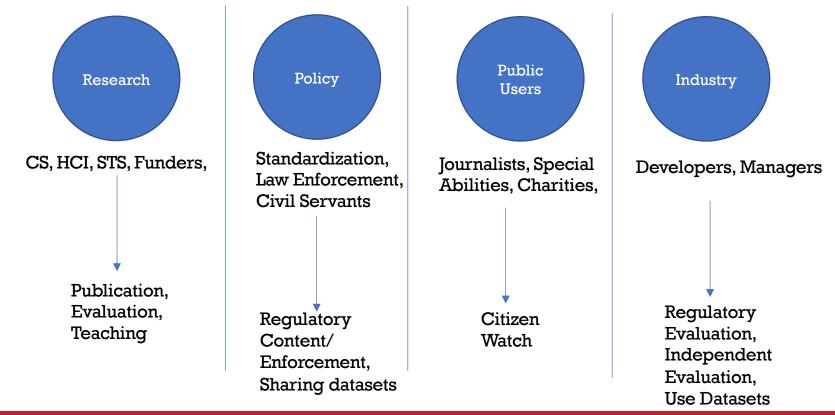
Privacy Enhancing Technologies (PETs) Testbed

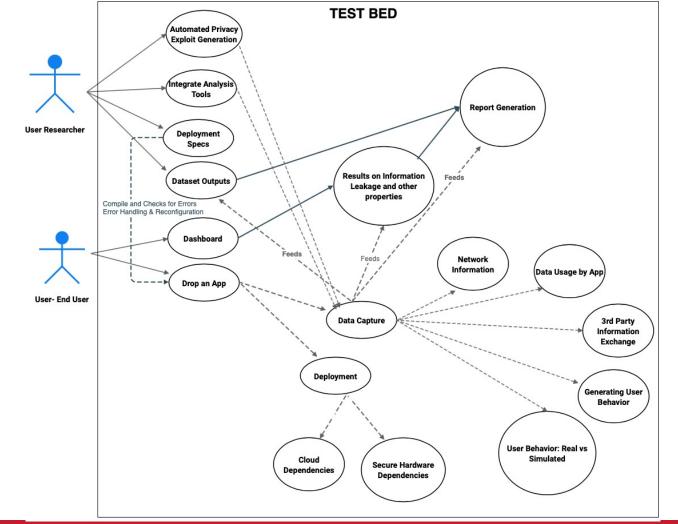
Partha Das Chowdhury (partha.daschowdhury@bristol.ac.uk) Joe Gardiner (joe.gardiner@bristol.ac.uk)

Bristol Cyber Security Group

Testbed Team


Awais Rashid Tariq Elahi Joe Gardiner Partha Das Chowdhury Mohammad Tahaei Student Developers: Graham Peden (Networking) Maysara Alhindi (Orchestration) Winston Ellis (Orchestration) Maria Sameen (Modelling) Anthony Mazeli (Documentation) Jacob Halsey (Project Student)

Overview


- Background
- Use Cases
- Design Considerations
- Current Implementation
- Demonstration
- Privacy Analysis
- Future Work
- Conclusion

Use Cases

Diversity of Users

Bristol Cyber Security Group

Use Case 1

- Developer Alpha produces an app using multiple third party libraries
- Wants to see if libraries are collecting unnecessary data from users
- Testbed launches multiple instances of Android and IoS devices with app installed
 - Testbed can simulate user interaction with app
- Testbed collects all network traffic from apps to internet, presents report to Alpha
 - Traffic contents, destinations etc
- Testbed can map collected data to a privacyevaluation framework (e.g. Privacy by Design, LINDDUN)
- Testbed can apply automated analysis (e.g. Exodus, LibRadar)

Use Case 2

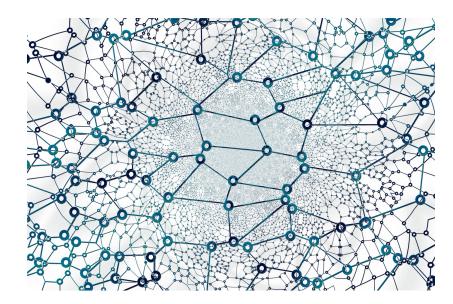
- Developer Beta develops a privacy preserving P2P file sharing application
- Wants to measure resilience against attacks such as Sybil or partitioning
- Launches large number of instances in P2P topology
- Makes subset of instances "malicious" to perform the attack
- Performs attacks, and measures impact on privacy and performance

Use Case 3

- Privacy Engineer Gamma wants to learn about and test modern PETs, e.g. homomorphic encryption, secure multiparty computation and differential privacy
- Testbed used to run and evaluate these technologies before use in final product
 - Can launch instances and simulate "users"

Current Test Case – End to End Encrypted Messengers

- What information is leaked from end to end encrypted messengers?
 - E.g. Signal, Whatsapp, Telegram
- Run clients in testbed, capture traffic, look for information leakage
 - Metadata
 - Inferable data


Testbed Design Considerations

Key Functionalities

- Deployment
- Orchestration
- Data Logging

Deployment

- Testbed should allow for easy deployment of services and hosts
 - Potentially thousands
- Support for both traditional hosts, as well as emulated smartphone OSs
- Testbed should provide a virtual network
 - Use of SDN for orchestration

Orchestration

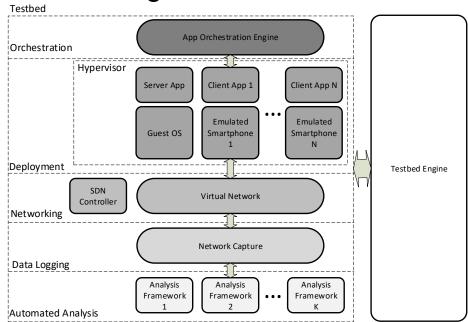
- Testbed should allow for automated control of applications
- Simulated user interaction, simulated sensor values
- Replaying of network traffic captures

Data Logging

- Testbed should capture sufficient data for analysis
- Potential sources:
 - Network captures
 - Memory captures
 - Screen captures

7									eth	0; C	aptur	ing - V	Vires	hark											le	
<u>File Edit</u>	View	Go	<u>Capture</u>	Ana	lyze	Statis	tics	Help																		
		e i (2	X			à, 4	•	• 1	• •	-				Q		Q	**	V	1		*		2
Filter:					_					-	4 E	pressi	on	<u></u> [e	ar	🖉 Ар	ply									
	Time		Source					stinatio				Protoc		nfo												
	129.9		WISCI					Jaucas				ALA		по па												
			Thoms			:4†		stron_				ARP		92.16							35:41					
			192.1					2.168.		4		DNS		tanda												
			192.1					2.168.				DNS		standa												.9.9
	139.9		192.1					102.9				TCP		2216												
	140.0		66.10					2.168.				TCP		ttp >											MSS=	1430
		79583						102.9				TCP		2216												
			192.1					102.9				HTTP		iET /c												p=1
			192.1					102.9				TCP		2216												
			192.1					102.9				TCP		2218											5=2	
			66.10		-			2.168.				TCP		ttp >												
		97777						2.168.				TCP		ttp >											=0	
			192.1					102.9				TCP		2216												
4	1/0 2	10010	66 10	200	0		107	160	1 60			TCD		ttn s	622	10 10	CVM.	ACK1	Con-	-0 Ac	k=1 k	hn-5	1.002	00-0	MCC-	1/20
 Frame Ethern Addres 	net II	, Src:	Vmwar	e_38:	eb:0	e (00			eb:Oe	e), I	Dst:	Broadc	ast (ff:ff	:ff:1	f:ff	f:ff)									
0010 08	00 06	5 04 0	f ff 0 0 01 0 0 00 c	0 Oc	29 3	88 eb		8 06 C a8 3)8.)8. 9.														
eth0: <liv< td=""><td>o cont</td><td>ire in n</td><td>rogress</td><td>5</td><td>Da</td><td>ckote-</td><td>445 Di</td><td>isnlavo</td><td>d: 445</td><td>Ma</td><td>rked- r</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Dro</td><td>file: D</td><td>fault</td><td></td><td></td><td></td></liv<>	o cont	ire in n	rogress	5	Da	ckote-	445 Di	isnlavo	d: 445	Ma	rked- r										Dro	file: D	fault			

This Photo by Unknown Author is licensed under CC BY-SA

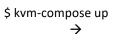

Further Design Elements

- Application Agnostic
 - Testbed should support multiple application types and architectures
- Extensibility
 - Testbed should be scalable.
 - Multiple instances of testbed should be joinable to increase virtualisation capability
- Automated Analysis
 - Testbed should have automated privacy analysis tools to be easily applied to use cases with minimal knowledge
- Modularity
 - New features (such as new analysis tool) can be added to testbed with ease

Testbed Implementation

Overview

• Testbed consists of tool, kvm-compose, which manages deployment, networking and orchestration


Virtualisation

- Virtualisation is provided using KVM
- Can deploy OS from disk image, or build as required
- Android applications emulated using Google's Android Virtual Device (AVD)
 - Deployed inside Ubuntu Desktop VM
- Virtualisation managed by kvm-compose tool

kvm-compose

 kvm-compose is a CLI tool Jacob developed (and expended by team) for Linux using Rust (and the libvirt library) that takes in a custom configuration file format describing a test environment, and can create or destroy it (with up/down subcommands).

1	🤤 ma	chines:
2		- name: server
3		memory_mb: 4096
4		cpus: 2
5		disk:
6		existing_disk:
7		path: ./server-disk.img
8		driver_type: qcow2
9		interfaces:
10		- bridge: br0
11		
12	br	idges:
13		- name: br0
14		

Virtual Machine Manager		- 🗆 😣
File Edit View Help		
🛀 💻 Open 🕨 🛄 🕛 🗸		
Name	-	CPU usage
▼ QEMU/KVM		
ppt-server Running		M

- This is the first step of automating a testbed:
- From a simple configuration file kvm-compose will deal with the conversion to a relatively complex <u>libvirt domain</u> configuration XMLs (for KVM), and create the virtual machines.
- It will also create and connect the virtual machines up to a virtual network

Cloud-init, Scripting, Context etc.

- <u>cloud-init</u> is used to automatically initialize new virtual machines (disk creation and software installation). The NoCloud datasource option uses a clever system of attaching a specifically formatted virtual disk, and passing flags via the SMBIOS serial number of the VM.
- What happens now?

ML k	vm-c	ompose.yaml ×
Т	φII	achines:
2		- name: server
3		disk:
4		cloud_image:
5		name: ubuntu_18_04
6		expand_gigabytes: 20
7		interfaces:
8		- bridge: br0
9		<pre>run_script: ./first_boot_script.sh</pre>
10		<pre>context: ./context_folder</pre>
11		
12	s	<pre>sh_public_key: ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQC</pre>
13		

- The Ubuntu cloud image will be downloaded (once and then cached), copied, and expanded with 20G free space.
- At boot the machine will auto configure its hostname to match the machine name in the configuration file.
- Our SSH public key will be injected into the instance, allowing remote access.
- Files in the context folder will be copied in at /etc/nocloud/context.
- An arbitrary run_script will be run once on the first boot.

Networking – Software Defined Networking

- Networking is provided using OpenvSwitch (OVS)
- OVS bridges can easily be linked up to an SDN controller (such as <u>Floodlight</u>), enabling more advanced network management.

bridges:

- name: br0

connect_external_interfaces: [eth0]
enable_dhcp_client: true
controller: tcp:127.0.0.1:6653
protocol: OpenFlow13

Floodlight Dashboard Topology Switches Hosts

Live updates

Switch 00:00:00:15:5d:0a:8f:17 /127.0.0.1:33980

Connected Since 28/04/2021, 11:42:14 Nicira, Inc. Open vSwitch 2.13.1 S/N: None OpenFlow Version: OF_13

Ports (4)

#	Link Status	TX Bytes	RX Bytes	TX Pkts	RX Pkts	Dropped	Errors
local (dp3t-br0)	UP	0	0	0	0	0	0
1 (eth0)	UP 1 Gbps FDX	0	0	0	0	0	0
2 (vnet0)	UP 10 Mbps FDX	0	0	0	0	0	0
3 (vnet1)	UP 10 Mbps FDX	0	0	0	0	0	0

Flows (73)

Cookie	Table	Priority	Match	Apply Actions	Write Actions	Clear Actions	Goto Group	Goto Meter	Write Metadata	Experimenter	Packets	Bytes	Age (s)	Timeout (s)
9007199254740992	0x0	1	in_port=1 eth_dst=00:15:5d:0a:8f:17 eth_src=c2:84:b4:74:d6:e4 eth_type=0x0x800 ip_proto=0x6 ipv4_src=34.107.221.82 ipv4_dst=10.3:10.146 tcp src=80 tcp dst=55810	actions:output=local						-	2	572	7	5

Networking - Management

- Linux bridge acts as DHCP and DNS server for clients, and as gateway for internet access
- Also provides NAT service for external connections
- At least one of the OVS bridges must be connected to Linux bridge
- Clients connect to OVS bridges, Linux bridge assigns IP addresses and runs internal DNS
- Internal routing managed by SDN controller, external traffic routed to linux bridge and external interface

Orchestration

- Need to be able to configure and control applications automatically
- Cloudinit can handle configuration and installation
- For interaction with command line applications, can use SSH
- For automated interaction with AVD devices, can use ADB functionality
 - Send screen presses
 - Send text
 - Can be recorded and replayed, or programmatically generated

Data Capture

- Tcpdump can be run on OVS bridges
 - A mirror port is configured and used for capture
- Can capture on individual bridges to capture at different points on the network
- If using external services, can capture on Linux Bridge to collect all traffic from testbed to outside
 - Does feature noise from background host machine and VM traffic

Demonstration

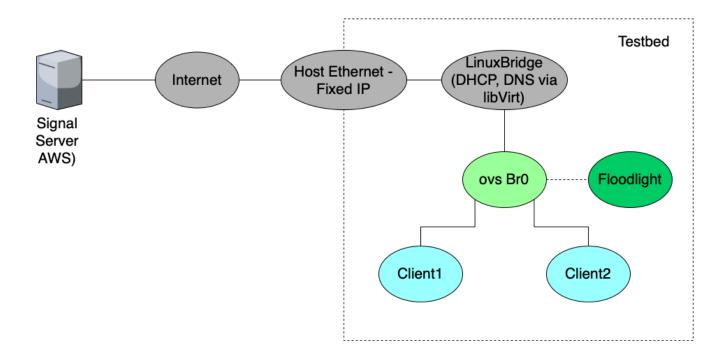
Demonstration Overview

- We will launch an deployment of the Signal end-to-end encrypted messaging application
- We will run 2 Android Signal clients on emulators, communicating with the real-world Signal servers
 - We can also run the 3rd party Signal-CLI client with our own server
- Clients will register numbers manually
- Clients will communicate automatically
- Testbed is running on a Dell Workstation
 - 2x Intel Xeon 4110 CPU (8 core 2.1 GHz), 125Gb RAM.

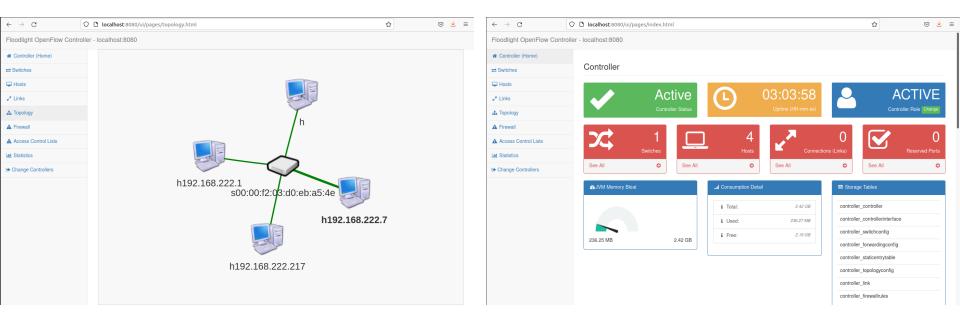
Demonstration – Virtual Machines

 We launch two instances of an Ubuntu VM running ADB to create 2 Signal Clients

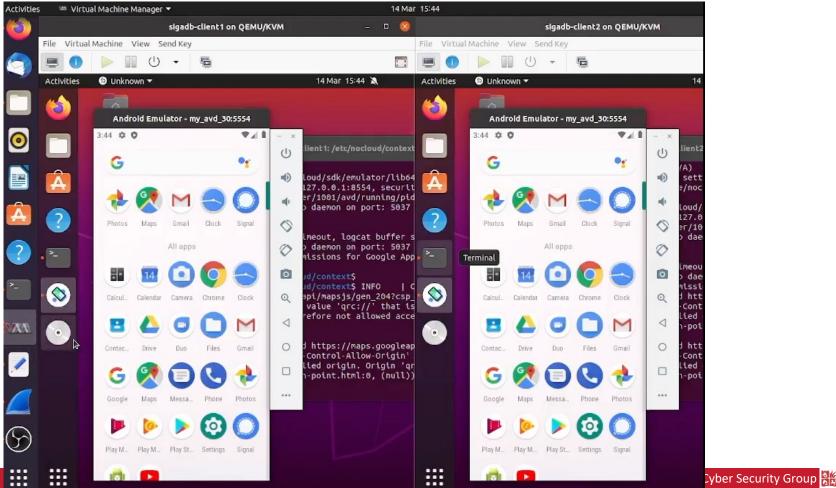
path: /home/gpeden/prj/rephrain-testbed/demo/ubuntu20.04-1.qcow2 driver_type: qcow2 device_type: disk readonly: false - bridge: br0 run_script: ./run.sh context: ./emulator/ memory mb: 6144 path: /home/gpeden/prj/rephrain-testbed/demo/ubuntu20.04-1.gcow2 driver type: gcow2 device_type: disk readonly: false - bridge: br0 - name: br0 controller: tcp:127.0.0.1:6653 protocol: OpenFlow13 external_bridge: br0


memory_mb: 6144

Compose Up


Activit	ties 🗈 Terminal 🔻			14 Mar 17:36		
- 🍪				Terminal		٩
6		Terminal	*	Terminal	*	Terminal
4	gpeden@rephrain:~/pr	j/rephrain-testbed/kvm∙	-compose/examples/sigadb\$			
•						
0				I		
Á						
?)					
. >						
• • • • • • • • • • • • • • • • • • • •	2					
• 💌						
•						
•)					
@BristolCyberSec						
@BristolCyberSec	[3] 0:bash*					"rephrain"

phrain" ol Cyber Security Group 🚟


Demonstration - Network

Floodlight SDN

Signal Registration

@BristolCyberSec

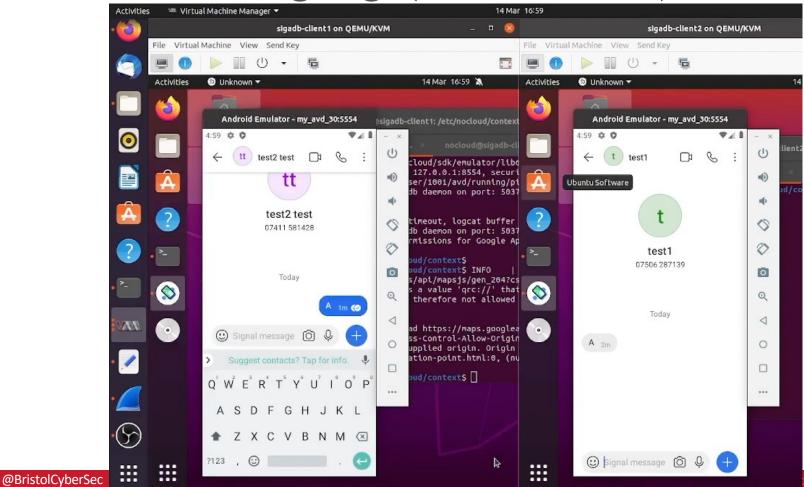
Orchestration

- Clients automatically send messages to each other
 - Includes simulated picture messages controlled by finger clicks
- Launched by bash script, messages sent using ADB functions
 - Automated text entry, no user interaction required

!/bin/bash

send_image(){
 echo "Sending an image"
 adb exec-out input tap 195 379
 sleep 1
 adb exec-out input tap 161 495
 sleep 1
 adb exec-out input tap 291 597
 sleep 1

send_text() { echo "Sending text \$1" adb exec-out input text "\$1" sleep 1 adb exec-out input tap 284 380 sleep 1


click_on_keyboard(){
 adb exec-out input tap 126 611

while :

, click_on_keyboard send_text "hello" send_image

done

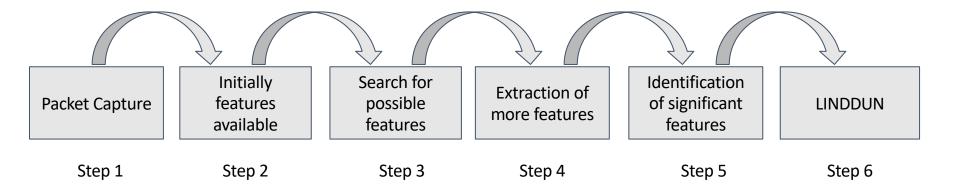
Client Messaging (Automated)

ol Cyber Security Group 👫

Demo – Data Capture

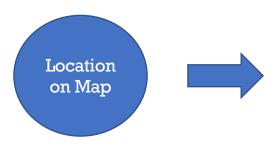
- Traffic is captured on OVS bridge
- Saved to PCAP
 - One capture during registration
 - One during messaging
- Used for privacy analysis

Privacy Analysis


Overview

- The information a passive adversary observing the network can learn.
 - Can they link communicating entities?
 - The hosts that has access to network information and information they can reveal.
- The information an active adversary can get -
 - For example, deanonymizing the sender and the recipient
- Information captured by third party APIs
- The efficacy of shareable datasets
 - Compliance with adequate anonymization
- Systematically analyse privacy behaviour of client-server application
 - Integrate with privacy threat elicitation frameworks the information visible to passive and active adversary
 - Evolve a risk/threat scenario

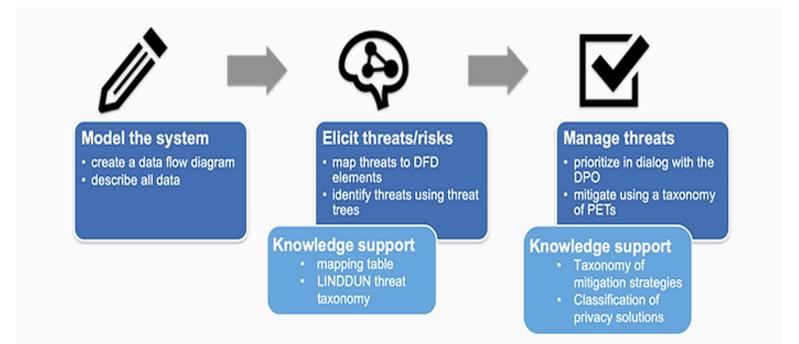
Extracted features


- Source IP Address
- Destination IP Address
- Source Port
- Destination Port
- Domain Name
- IP Protocol Specifier
- Length of packet
- Traffic Class QoS

How we performed the analysis?

Sample Results – Signal Message Exchange

13.248.212.111, 'ac88393aca5853df7.awsglobalaccelerator.com',United States 142.250.178.10, 'lhr48s27-in-f10.1e100.net',United States 142.250.200.10, 'lhr48s29-in-f10.1e100.net',United States 142.250.200.35, 'lhr48s30-in-f3.1e100.net',United States 142.250.200.42, 'lhr48s30-in-f10.1e100.net',United States 142.250.200.42, 'lhr48s30-in-f10.1e100.net',United States 192.168.222.1, 'ip-192-168-222-1.eu-west-2.compute.internal',Not found 192.168.222.7, 'ip-192-168-222-7.eu-west-2.compute.internal',Not found 192.168.212.202, 'ams16s21-in-f10.1e100.net',United States 216.58.212.206, 'ams16s21-in-f14.1e100.net',United States 35.232.111.17, '17.111.232.35.bc.googleusercontent.com',United States 76.223.92.165, 'ac88393aca5853df7.awsglobalaccelerator.com',United States


Bristol Cyber Security Group

Signal Client Registration

13.224.218.48, 'server-13-224-218-48.lhr61.r.cloudfront.net', United States 13.248.212.111, ac88393aca5853df7.awsglobalaccelerator.com', United States 142.250.178.19. (Ihr48s2 7-in-f19.1e100.net'.United States 142.250.178.2, Ihr48s2 .1e100.net'.United States 142.250.179.227. hr25s31-in-f3.1e100.net'. United States Se 142.250.179.234. hr25s31 e100.net'.United States 142.250.180.10. (hr25s32-in-f10.1e100) net'.United States 142.250.180.4. (hr25s32-in-f4.1e100) .net'.United States 142.250.200.10. hr48s29-in-f10.1e100.net'. United States DREGON 142.250.200.35. [hr48s30-in-f3] .1e100.net'. United States 142.250.200.42, <u>Ihr48s30-in-f10.1e100.ne</u>t, United States 142.250.200.46, Ihr48s30-in-f14.1e100 .net'.United States 142.251.5.188, wg-in-f188.1e100.net', United States Le100.net'.United States 172.217.16.234.'mad08s04-in-f10.1 172.217.169.10. [hr25s26-in-f10.1e100.net] '.United States 172.217.169.74. hr48s09-in-f10.1e100.net'. United States 192.168.222.1, 'ip-192-168-222-1.eu-west-2.compute.internal', Not found 192.168.222.217, 'ip-192-168-222-217.eu-west-2.compute.internal', Not found 192.168.222.7, ip-192-168-222-7.eu-west-2.compute.internal', Not found 216.58.212.206. ams16s21-in-f206.1e100.net'. United States 216.58.213.10, Ihr25s25-in-f10.1e100.net', United States 34.122.121.32, 32.121.122.34.bc.googleusercontent.com', United States 35.232.111.17, 17.111.232.35.bc.googleusercontent.com', United States 76.223.92.165, ac88393aca5853df7.awsglobalaccelerator.com, United States

What is LINDDUN?

LINDDUN Threat Categories

Linkability

An adversary is able to link two items of interest without knowing the identity of the data subject(s) involved.

Identifiability

An adversary is able to identify a data subject from a set of data subjects through an item of interest.

Non-repudiation

The data subject is unable to deny a claim (e.g., having performed an action, or sent a request).

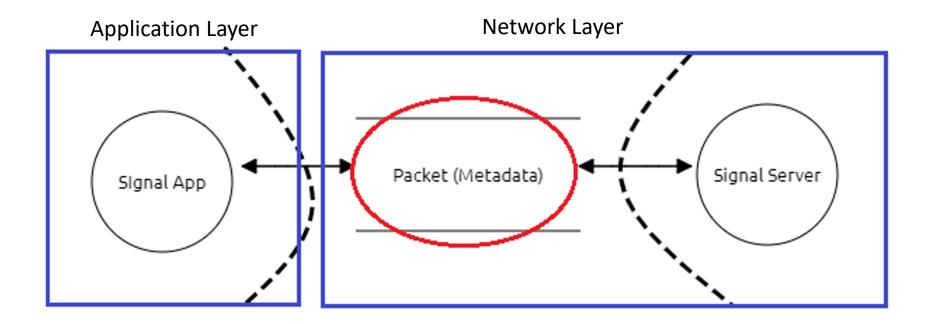
Detectability

An adversary is able to distinguish whether an item of interest about a data subject exists or not, regardless of being able to read the contents itself.

Disclosure of information

An adversary is able to learn the content of an item of interest about a data subject.

Unawareness


The data subject is unaware of the collection, processing, storage, or sharing activities (and corresponding purposes) of the data subject's personal data.

Non-compliance

The processing, storage, or handling of personal data is not compliant with legislation, regulation, and/or policy.

Step 6 - LINDDUN

Step 6 - LINDDUN

Metadata	L	I	Ν	D	D	U	Ν
Src IP Add.	х	х	x	х	х	x	
Dst. IP Add.	х	х	x	х	х	x	
Src. Port	х	х	x	х	x	x	
Dst. Port	х	х	x	х	x	x	
Domain Name	х	x	x	х	x	x	х
IP Protocol Specifier	x	x	x	х	x	x	x
QoS			х	х			

LINDDUN - Examples and Implications

Metadata	L	I	Ν	D	D	U	Ν
Src IP Add.	X	x	х	x	x	x	
Dst. IP Add.	X	x	х	x	x	х	
Src. Port	x	x	х	x	x	x	
Dst. Port	x	x	X	X	х	х	
Domain Name	x	x	х	x	х	х	x
IP Protocol Specifier	х	х	X	X	х	х	x
QoS			X	×			

Future Work

Future Work – Implementation

- Improved scalability
 - Deployable across multiple machines
- Greater degree of automated interaction
- Further improvements to deployment mechanisms
 - E.g. snapshots
- Implement further data sources for analysis

Future Work – Privacy Analysis

- Pruning the capture information.
- Explore the extent to which we can automate the analysis with LINDDUN
- Incorporate data taxonomy with threat taxonomy.

Publications

- "A Privacy Testbed for IT Professionals: Use Cases and Design Considerations" J. Gardiner, M. Tahaei, J. Halsey, T. Elahi, A Rashid; 7th Workshop on Security Information Workers (WSIW 2021) (Extended Abstract)
- "Building a Privacy Testbed: Use Cases and Design Considerations" J. Gardiner, P. D. Chowdhury, J. Halsey, M. Tahaei, T. Elahi and A. Rashid; 4th International Workshop on SECurity and Privacy Requirements Engineering (SECPRE 2021) (Short Paper)

Thank You!

Questions?

Contact:

Partha Das Chowdhury (partha.daschowdhury@bristol.ac.uk) Joe Gardiner (joe.gardiner@bristol.ac.uk)

