REPHRAIN PETs Testbed: Use Cases, Design Considerations and Current Progress

Joe Gardiner

REPHRIAN Project Meeting November 2021

Bristol Cyber Security Group

Background – REPHRAIN Toolbox

- REPHRAIN toolbox
 - Datasets
 - Benchmarks
 - Reference Scenarios
 - Methods, Tools and Prototypes
 - PETs testbed
- Goal of this work is to design & build the PETs testbed
- Testbed will be both centrally hosted primary instance, and available to download for individual deployment

THE UNIVERSITY

of EDINBURGH

This Talk

- Use cases for privacy enhancing technologies (PETs) testbed
- Design considerations
- Prototype implementation

Use Cases

@BristolCyberSec

Intended Users

- Application Developers
 - Testing of apps/libraries as part of development
- Privacy Professionals
 - Auditing of existing applications
- Security Researchers

Use Case 1

- Developer Alpha produces an app using multiple third party libraries
- Wants to see if libraries are collecting unnecessary data from users
- Testbed launches multiple instances of Android and IoS devices with app installed
 - Testbed can simulate user interaction with app
- Testbed collects all network traffic from apps to internet, presents report to Alpha
 - Traffic contents, destinations etc
- Testbed can map collected data to a privacyevaluation framework (e.g. Privacy by Design, LINDDUN)
- Testbed can apply automated analysis (e.g. Exodus, LibRadar)

Use Case 2

- Developer Beta develops a privacy preserving P2P file sharing application
- Wants to measure resilience against attacks such as Sybil or partitioning
- Launches large number of instances in P2P topology
- Makes subset of instances "malicious" to perform the attack
- Performs attacks, and measures impact on privacy and performance

Use Case 3

- Privacy Engineer Gamma wants to learn about and test modern PETs, e.g. homomorphic encryption, secure multi-party computation and differential privacy
- Testbed used to run and evaluate these technologies before use in final product
 - Can launch instances and simulate "users"

Specific Use Case Examples

- Contact Tracing Application
- Privacy Preserving Browsers

Contact Tracing Application

- Covid-19 tracing application built on Google Apple Exposure Notification (GAEN) framework.
- Developer uses *ExposureNotificationClient* to implement tracing functionality, including transmission and receiving of close contact information
- Application should not reveal any PII when exchanging close contact information or when at rest
- Instances of application and centralised control server launched into testbed
- Perform evaluation over data, e.g. attempt to de-anonymise client side data

Privacy Preserving Browsers

- Browsers such as the Tor Browser and Brave use the Tor anonymity network.
- Available for both Android and iOS
- For iOS browsers use WebKit framework, which can override some anonymity features, leaving iOS users potentially vulnerable
- Testbed used to do a comparative study of privacy browsers on anonymous networks.
 - E.g. leakages that may occur due to use of WebKit framework

Testbed Design Considerations

Key Functionalities

- Deployment
- Orchestration
- Data Logging

Deployment

- Testbed should allow for easy deployment of services and hosts
 - Potentially thousands
- Support for both traditional hosts, as well as emulated smartphone OSs
- Testbed should provide a virtual network
 - Use of SDN for orchestration

Orchestration

- Testbed should allow for automated control of applications
- Simulated user interaction, simulated sensor values
- Replaying of network traffic captures

Data Logging

- Testbed should capture sufficient data for analysis
- Potential sources:
 - Network captures
 - Memory captures
 - Screen captures

J													eth(0: C	aptu	ring -	Wire	eshar	k														٥
Eile	<u>E</u> dit	⊻ie	w <u>G</u> o	<u>C</u> a	pture	e <u>A</u> n	alyze	<u>S</u> t	atist	ics	He	р																					
•	6		e (<u>)</u>			2	×	¢	đ	2	C	4	-	•	•	ř	₽.				Q		1	Ē	*	×.		1	5	×	0	
M E	ilter:													•	4	xpres	sion	•	<u>C</u> lea	ar 💊	РАр	ply											
No		Time		S	ourc	e				D	estir	atior	1			Prote	ocol	Info															
	40	128.	331101	W	LPLL	01_0	1.07			D	Uau	Last				ALA		WITU	TIdb	192	. 100	D. 1	2341	те		192.	100.	1.00	5				
	47	139.	931463	3 TI	noms	ionT_	08:3	5:41		W:	lstr	on_0	7:07	:ee	1	ARP		192	.168	.1.2	54 1	LS a	t 00	:90:	d0:0	38:3	5:41						
	48	139.	931466	5 1	92.1	68.1	.68			19	92.1	68.1	.254	1		DNS		Sta	ndar	d qu	ery	AW	w.g	oogl	.e.co	DM							
	49	139.	975406	5 1	92.1	68.1	.254			19	92.1	68.1	.68			DNS		Sta	ndar	d qu	ery	res	oons	e Ch	IAME	www	.l.g	oogl	.e.co	om A	66.1	102.9	. 5
	50	139.	976811	1	92.1	68.1	.68			6	5.10	2.9.	99			TCP		622	16 >	htt	p Ls	5YN]	Seq	=0 W	/1n=8	8192	Len:	=0 M	ISS=1	460	WS=2	2	
	51	140.	079578	3 6	5.10	2.9.	99			19	92.1	68.1	.68			TCP		htt	p >	6221	6 [5	SYN,	ACK	J Se	0=pe	Ack	=1 W1	1n=5	5720	Len	=0 MS	5S=14	Э
	52	140.	079583	8 1	92.1	.68.1	.68			6	5.10	2.9.	99			TCP		622	16 >	ntt	p L#	ACK J	Seq	=1 4	ACK=1	1 W1	n=65.	780	Len=	=0			L
	53	140.	080278	8 1	92.1	.68.1	.68			6	5.10	2.9.	99			HTTE	>	GET	/co	mple	te/s	sear	ch?h	L=en	1&C L1	lent	=sug	gest	&]s=	true	e&q=n	n&cp=	1
	54	140.	086765	> 1	92.1	.68.1	.68			6	5.10	2.9.	99			TCP		622	16 >	htt	p LF	-IN,	ACK.	J Se	9d=80	05 A	ck=1	Win	1=657	/80 L	_en=0)	
	55	140.	086921	. 1	92.1	.68.1	.68			0	5.10	2.9.	99			TOP		622	18 >	ntt		SYNJ	Seq	=0 W	vin=	8192	Len	=U M	155=1	460	W5=4	2	
	56	140.	197484	1 0	5.10	2.9.	99			- 11	92.1	68.1	.68			TOP		ntt	p >	6221	6 [A	ACK J	Seq	=1 A	4CK =8	305	win=,	/360	Ler	1=0			
	5/	140.	197777	0	0.10	2.9.	99			11	92.1 = 10	08.1	.08			TCP		622	p >	6221		-IN,	ALK.	1 26	t=p:	ACK	-806	WIN CE 70	1=730		in=0		
	58	140.	19/811		92.1	08.1	.08			1/	0.10	2.9.	99			TCP		022 h++	10 >	6221		ACK J	Sed	1 64	ACK	(=2)	win=0	576	2720	n=0	-0 M		5
					-					-						11111																	í
Er		14	12 hut			i no	40 k				nod	\ \																					
	anne	1 (-	12 Dyt		iii wa	rie,	42 L	yres	> Ce	pro	neu																						
Et	nerr	net 1	I, Sr	c: \	mwa	re_36	s:eb:	0e	100:	OC:	29:	38:e	b:0e),	Dst:	Broad	cast	: (11	: 11:	TT : TI	1:11	: 11	1										
Ac	dres	ss Re	solut:	ion	Prof	tocol	. (re	ques	st)																								
000	11	11 1	11 11	tt 1	11 0	0 Oc	29	38	eb ()e (08 0	6 00	01	•	••••)8	3																
010	08	00 0	06 04	00 (1 0	0 00	29	38	eD (.e (:0 a	8 39	80		••••)8	5	9.															
020	00	00 (00 00	00 0	лıс	u a8	39	υz						•	••••	9.																	
th0	: < liv	e car	ture in	proc	ires	> Fil.	P	acke	ts: á	45	Disn	aved	: 445	Ma	rked:	0											Profi	ile: D	efau	ŀ			ł
		- cup		p. 03	1.000			aren o			sisp	0,00	45		. res un	- -										1			- artarta				

This Photo by Unknown Author is licensed under CC BY-SA

Further Design Elements

- Application Agnostic
 - Testbed should support multiple application types and architectures
- Extensibility
 - Testbed should be scalable.
 - Multiple instances of testbed should be joinable to increase virtualisation capability
- Automated Analysis
 - Testbed should have automated privacy analysis tools to be easily applied to use cases with minimal knowledge
- Modularity
 - New features (such as new analysis tool) can be added to testbed with ease

Prototype

- 3rd Year project student, Jacob Halsey
 - Supervisors: Awais Rashid, Joe Gardiner
- Tasked with building prototype testbed for REPHRAIN
- Project completion May 21
- Built kvm-compose tool:
 - Virtual machines (including installed software) and virtual network specified in config file
 - Software-defined networking
 - Currently supports network data capture
 - Two deployed applications
 - Swiss Covid-19
 - Signal Framework

Demo – Swiss Covid-19 App

@BristolCyberSec

Future

- App interaction automation automating the process of simulating apps, in particular user interactions, to enable larger scale testing without intervention
- Conduct tests and make any necessary ease of use improvements for running deployments with a very large number of virtual machines.
- Add support for more complex captures such as memory dumps.
- Introduce privacy frameworks
- Hired 5 CDT student developers to build going forward.

Publications

- "A Privacy Testbed for IT Professionals: Use Cases and Design Considerations" J. Gardiner, M. Tahaei, J. Halsey, T. Elahi, A Rashid; 7th Workshop on Security Information Workers (WSIW 2021) (Extended Abstract)
- "Building a Privacy Testbed: Use Cases and Design Considerations" J. Gardiner, P. D. Chowdhury, J. Halsey, M. Tahaei, T. Elahi and A. Rashid; 4th International Workshop on SECurity and Privacy Requirements Engineering (SECPRE 2021) (Short Paper)

Conclusion

- We are aiming to build a testbed to assist IT professionals in evaluating privacy behaviour of applications
- Testbed currently in prototyping stage
 - Deployment of emulated Android VMs and OpenVSwitch virtual network, with support for network traffic capture
 - Two test applications:
 - Swiss Covid-19 track and trace application
 - Signal framework
- Keen to hear opinions and thoughts on how testbed platform can be better suited to needs and requirements of IT professionals and researchers

Questions?

Thank You!

Testbed Team: Awais Rashid Tariq Elahi Joe Gardiner Mohammad Tahaei Partha Das Chowdhury

CDT Developers: Graham Peden (Networking) Maysara Alhindi (Orchestration) Winston Ellis (Orchestration) Maria Sameen (Modelling) Anthony Mazeli (Documentation)

Joe Gardiner: joe.gardiner@bristol.ac.uk

Bristol Cyber Security Group