REPHRAIN

Protecting citizens online

Building a Privacy Testbed: Use Cases and
Design Considerations

Joseph Gardiner, University of Bristol
Partha Das Chowdhury, University of Bristol
Jacob Halsey, University of Bristol
Mohammad Tahaei, University of Bristol
Tariq Elahi, University of Edinburgh

Awais Rashid, University of Bristol

October 2021
(W4 ukresearch EAKE University of THE UNIVERSITY N
=4 i and Innovation BRISTOL Nk of EDINBURGH LONDON

Building a Privacy Testbed:
Use Cases and Design Considerations

Joseph Gardiner!, Partha Das Chowdhury!, Jacob Halsey', Mohammad Tahaei!,
Tariq Elahi?, and Awais Rashid!

! University of Bristol
2 University of Edinburgh
{joe.gardiner, partha.daschowdhury, vw18148, mohammad.tahaei,
awais.rashid}@bristol.ac.uk, t.elahi@ed.ac.uk

Abstract. Mobile application (app) developers are often ill-equipped
to understand the privacy implications of their products and services,
especially with the common practice of using third-party libraries to
provide critical functionality. To add to the complexity, most mobile
applications interact with the “cloud”—mnot only the platform provider’s
ecosystem (such as Apple or Google) but also with third-party servers (as
a consequence of library use). This presents a hazy view of the privacy
impact for a particular app. Therefore, we take a significant step to address
this challenge and propose a testbed with the ability to systematically
evaluate and understand the privacy behavior of client server applications
in a network environment across a large number of hosts. We reflect on
our experiences of successfully deploying two mass market applications
on the initial versions of our proposed testbed. Standardization across
cloud implementations and exposed end points of closed source binaries
are key for transparent evaluation of privacy features.

Keywords: privacy-enhancing technologies - testbed - usable privacy -
privacy professionals.

1 Introduction

For developers privacy is often not the explicit goal [5]. The benefits of making
use of fine-grained personal information are immediate, but the consequences of
this insecure behavior is delayed and difficult to comprehend [3]. Furthermore,
the software collecting and processing personal information encapsulates complex
mathematics, tools, and a diverse understanding of privacy. Moreso when Privacy
Enhancing Technologies (PETSs) are integrated into apps as a mitigation against
unwanted data leaks.

Solove et al. argue that privacy is far too complex to be left in the hands
of average consumers (including developers); the solution lies in regulating the
infrastructure that collects, stores, and transfers information [21]. However, it
is currently not possible to gain insights into these infrastructures due to an
absence of a mechanism to ascertain the flow of information in practice. This

2 J. Gardiner et al.

absence impedes developers, regulators, and users to verify the claims made by
applications about their data practices and the PETs they employ.

In this paper, we address this gap by proposing a privacy testbed. We sketch
use-cases, discuss design considerations, and reflect on the initial implementations
of our proposed automated testbed to verify the privacy features/claims of
mass market client server applications that use PETs. This forms the basis of the
testbed proposed by the National Research Centre on Privacy, Harm Reduction
and Adversarial Influence Online (REPHRAIN) announced by UK Research and
Innovation in October 2020. While testbeds have been proposed in other settings,
e.g., security of control systems and IoT [11, 18, 14], to our knowledge, this paper
is the first to propose a privacy testbed.

2 Use Cases

Our proposed testbed can assist software developers, system administrators, and
privacy professionals, to run large scale analysis without the need to deploy
any infrastructure or have access to several (potentially costly) target devices.
They will be able to instantiate multiple virtual devices with various versions
of operating systems to facilitate executing privacy-related analyses. Regulators
can use our testbed as well for certification and verification purposes. We outline
three sample use cases for exposition.

2.1 Contact Tracing Applications

A developer of a contact tracing app uses the Google Apple exposure notification
(GAEN) framework [13]. The application uses exposure notification framework to
detect individuals who might be exposed to other individuals with a virus. The
cryptographic operations are handled by GAEN. The app developers are required
to use the EzposureNotificationClient class to implement functions allowing users
to start/stop tracing, handle exposure related notifications, medical information
and receive broadcasts. There is a ephemeral key which is generated at regular
intervals and upon infection the history of the keys over a fixed period of time
are sent to the authorities for alerting potential contacts within that period.
Applications should not reveal any personal sensitive information either during the
exchange, broadcasts or while data is at rest. Recent research suggests the security
and privacy of contact tracing applications are fraught with imperfections [23].

Our testbed would allow the users to run multiple tests on both the server
and the client side using multiple virtual instances. For example, at the client
side potential concerns like can a user de-anonymize infected contacts or other
contacts using the app? can be tested using our testbed. The enormity and scale
of server side data can be independently explained to regulators, developers
and/or end users. Furthermore the data can be interfaced with privacy evaluation
frameworks like (Privacy by Design [16] and LINDDUN [9]) to preempt a repeat
of CARE data scandals [19]. The ability to refute through practical manifestations
of the threat will lead to effective and privacy enhancing application development.

Building a Privacy Testbed: Use Cases and Design Considerations 3

This would be useful in authentication situations (e.g., Kerberos deployments)
where privacy is not a requirement but the remote entity is untrustworthy.

2.2 Privacy Preserving Peer to Peer (P2P) File Sharing Systems

Participants in P2P systems also run the infrastructure [24] and rely on the
honesty and competence of other participants. One way to disrupt the system
is to infiltrate the membership of the network through favored pawns and gain
control [4]. Wang et al. describe possible horizontal and vertical attacks to
put enough traffic in the hands of the attacker to identify participants in the
network [22]. Some solutions suggest the presence of a strong central authority
to prevent hostile takeover of the network [10], which leads to a single point of
failure. The threat of partitioning by malicious participants generally applies to
cryptographic ways of stamping digital documents [15], decentralized property [8],
and programmable replicated state machines based upon the Byzantine General’s
problem [17].

Our testbed can replicate large number of independent instances through
virtualization. This gives the ability to deploy a large number varied independent
instances with similar diversity of real world infrastructure. Attacks can then be
simulated by turning a subset of the virtual machines malicious. These simulations
would enable systems to observe attacks as they happen and depending on the
specific attack scenario, the testbed can measure the impact on application
performance whilst under attack, measure if a subset of compromised nodes can
deanoymize users, and other security, privacy, and performance metrics.

2.3 Privacy Preserving Browsers using Privacy Preserving
Networks

The Tor browser, Brave and other Onion browsers use the Tor anonymity
network [1] to prevent traceability of communicating parties. They are available
for both the Android and iOS platforms. For i{OS devices the browsers use the
WebKit framework, which can override some anonymity features, leaving 10S
users potentially vulnerable. The DuckDuckGo browser promises privacy yet they
also have a search engine, which may lead to privacy leaks.

The testbed we propose in this paper can be used to do a comparative study
of the browsers on anonymous networks. For example the leakages that might or
might not happen due to compulsive use of WebKit framework. The economic
incentives of DuckDuckGo browser against their claims of privacy and how that
translates in the network traffic can be tested using our testbed. Our ability to
deploy multiple hosts and instances can enable tests to be carried out on the
effectiveness of Tor against push notifications.

3 Design

The testbed stems from the acknowledgment of the power yet the limit of
theoretical models [12]. The requirements of the testbed are captured in Figure 1:

4 J. Gardiner et al.

Testbed

Orchestration

EL] Virtual Network
Controller

Networking 11
i
(Network Capture) i
Datalogging) E—

]

I

I

I

I

.

!

!

]

I

I

I

I

I

.

!

i

o [A — I Testbed Engine

!]

! !

]]

I I

I I

: :
1

i

!

]

I

I

I

I

I

.

]

I

I

I

I

I

Analysis Analysis Analysis
Framework Framework | eee | Framework
. 1 2 K
'Automated Analysis

Overview.pdf

Fig. 1: High-level design of the testbed

Deployment. The testbed needs to support the easy deployment of potentially
thousands of hosts and services (i.e. the back-end) as well as individual hosts
representing users. As well as deploying simple virtual machines, the ability to
deploy more modern types of host, such as emulated smartphone environments, is
also required. The testbed should provide the functionality to configure machines
automatically, including setting machine properties such as hostnames, installing
applications to be tested and configuring individual application deployment
specific variables such as usernames.

Networking. A realistic virtual network should be deployed for virtual hosts.
Complex topologies resembling a real-world deployment can thus be produced.
In a real-world setting there may be hundreds of routers and switches involved in
the routing of traffic. Each of these, if compromised, becomes a potential point
for information leakage to occur and so emulating this environment can provide
richer analysis. To support greater flexibility and finer control over the network,
software-defined networking is used which allows for the easy deployment of
network applications.

Orchestration. Users should be able to automate application functions in order
to test at scale without manual intervention. For example, for the contact tracing
use cases, users should be able to simulate the broadcast and receive functions
required by the application, as well as simulate the interaction between the virtual

Building a Privacy Testbed: Use Cases and Design Considerations 5

hosts. This will be done for diverse platforms as well as for diverse users. Our
testbed would include automated navigation within smartphone applications,
replaying of network traffic from previous captures or simulated users.

Data Logging. The purpose of the testbed is credible data collection. The diversity
of platforms and hosts would mean that the testbed is agnostic and should be
able to support data capture from these devices and platforms. The obvious
data type to capture is network traffic. As an example, when testing a contact
tracing application a tester should be able to send an infection report and the
packets containing that report should be captured. As well as network traffic,
this can also include live memory captures from virtual hosts and automated
screen captures of administrator and user screens.

Automated Analysis. Whilst some users of the testbed will want to perform
manual analysis of data captured, for a developer not familiar with privacy
analysis frameworks, the testbed should be able to automatically apply such
frameworks. For example, by interfacing the data logs with the LINDDUN
framework a user will be able to understand the privacy implications resulting
out of the trust relationship on the remote entity. The framework includes hard
and soft privacy properties like unlinkability, undetectability, plausible deniability
and user content awareness respectively [9].

4 Prototype Implementation

In order to demonstrate the intended operation of the testbed, we have imple-
mented a prototype. The prototype consists primarily of a command line utility
called kvm-compose, written in Rust and modeled after the docker-compose
utility used to manage Docker containers. The kvm-compose utility reads a con-
figuration YAML file which specifies which virtual machines should be launched,
as well as the network topology to be deployed. Once the configuration file is
written, then the testbed can be brought up using a simple kvm-compose up
command, and shut down using kvm-compose down. The utility also allows the
user to bring up or tear down specific virtual machines without affecting the rest
of the testbed environment.

Listing 1.1: Example machine confguration

— name: examplel # VM Name
memory.-mb: 4096 # Optional: default 512MiB
cpus: 4 # Optional: default 1
disk : # Two variants: cloud_image
cloud_image : or existing_disk
name: ubuntu_18_04
expand-gigabytes: 25 # Optional
interfaces : # Connected network interfaces
— bridge: br0 #
run-script: ./script.sh # Optional: path to a script
context: ./ file.txt # Optional: path to a file or folder
environment : # Dictionary of arbitary environment variables
key: value # Use /etc/nocloud/env.sh xkeyx to query

Assuming that the disk image supports cloud-init at first boot the following will
happen:

6 J. Gardiner et al.

The machine name (with project prefix) is used as the hostname.

The SSH public key is injected into the instance.

— File(s) specified in context are copied into the /etc/nocloud/context
directory.

The run_script is executed, with its output log saved into /etc/nocloud/.

Virtualization. Virtualization is provided by Kernel-based Virtual Machine
(KVM), which is a kernel module for the Linux operating system that allows it
to function as a hypervisor. In order to assist in automated machine deployment,
cloud-init [7] is used, which allows virtual machines to receive a list of data
sources (such as URLs or files) with machine deployment information (such as
locale, hostname and SSH keys) to be used for that instance.

Networking. Networking is provided using OpenVSwitch (OVS) virtual switches.
OVS is used due to its support of software-defined networking (SDN), which
allows fine-grained control over the network. The Floodlight SDN controller is
used to provide control.

Network Capture. When a test environment has been built (using the kvm-compose
up command), network traffic can then be collected using the ovs-tcpdump utility
of OVS [2]. This creates a temporary mirror port on the specified bridge, with
traffic from specified ports being mirrored.

5 Reflection and Evaluation with Example Deployments

We used a messaging application Signal and a contact tracing application De-
centralized Privacy-Preserving Proximity Tracing (DP3T) [6] to test the design
considerations of our testbed. The DP3T project provides an SDK (Software
Development Kit) for both Android and Apple iOS which is used to communicate
with the backend server. It is this library which is used in the official implementa-
tions such as SwissCovid. Signal is a messaging service built using its own custom
end-to-end encryption protocol (the Signal Protocol), available for a number of
platforms on mobile and desktop, designed with a focus on privacy [20].

We have been able to successfully deploy instances of DP3T and Signal where
the virtual machines communicated with external networks to download their
dependencies. The SDN controller can be attached to multiple bridges and used
to deploy more complex networks. Our testbed successfully captured network
traffic from the example projects. A potential improvement could be to integrate
the packet capture commands as part of the kvm-compose utility to produce a
more streamlined experience for the user.

The DP3T example demonstrates the use of multiple hosts namely a desktop
computer and a mobile phone (Anboz and Android Emulator). These implemen-
tations do not support Bluetooth and that can be a limitation for closed binaries
(without exposed end-points) where inputs cannot be simulated. However, in our
DPST tests, this has not been an impediment as we could simulate inputs. The

Building a Privacy Testbed: Use Cases and Design Considerations 7

UK’s NHS COVID-19 contact tracing app implementation is highly coupled to
Amazon Web Services (AWS), and as such it is difficult to run within the testbed.
Cloud-native applications do need standardization for transparent evaluation.
The kvm-compose used with cloud-init utility makes the testbed easy to
deploy and replicate such as the servers for the DP3T and Signal examples. The
level of automation for mobile apps requires further work. While in the DP3T
example the emulators are installed automatically, it still requires the app to
be launched and driven by a user using a window manager. Furthermore, the
progress and status (success or failure) during the virtual machine run_script
phase are not easily accessible, which also impedes extensive automation.

6 Conclusion

The testbed is relevant for developers of systems used by traditional as well
as modern hosts in the modern digital economy based on capturing, utilizing
and monetizing large-scale information flows. We address at the heart of the
information asymmetry that has been characteristic to this eco-system. An entity
producing the technologies has more information than the user; the user has no
way to verify the claims made by the producer. Our work is a stepping stone
towards empowering developers and users.

References

1. https://wuw.torproject.org, accessed June 2021

2. https://docs.openvswitch.org/en/latest/ref/ovs-tcpdump.8/, accessed June
2021

3. Acquisti, A., Brandimarte, L., Loewenstein, G.: Secrets and Likes: The Drive for
Privacy and the Difficulty of Achieving it in the Digital Age. Journal of Consumer
Psychology (2021)

4. Bager, K., Anderson, R.: Do you believe in Tinker Bell? The social externalities of
Trust Transcript of Discussion. In: Revised Selected Papers of the 23rd International
Workshop on Security Protocols XXIII - Volume 9379. p. 237—246. Springer-Verlag,
Berlin, Heidelberg (2015)

5. Braz, L., Fregnan, E., Calikli, G., Bacchelli, A.: Why don’t developers detect
improper input validation? DROP TABLE Papers; —. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). pp. 499-511 (2021).
https://doi.org/10.1109/icse43902.2021.00054

6. Busvine, D. Rift opens over European coronavirus contact
tracing APPs (Apr 2020), https://www.reuters.com/article/
uk-health-coronavirus-europe-tech-idUKKBN2221U67edition-redirect=uk

7. Canonical: cloud-init - The standard for customising cloud instances, https://
cloud-init.io/

8. Crispo, B., Lomas, T.M.A.: A certification scheme for electronic commerce. In: Lo-
mas, T.M.A. (ed.) Security Protocols, International Workshop, Cambridge, United
Kingdom, April 10-12, 1996, Proceedings. Lecture Notes in Computer Science,
vol. 1189, pp. 19-32. Springer (1996). https://doi.org/10.1007/3-540-62494-5_2,
https://doi.org/10.1007/3-540-62494-5_2

8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.

23.

24.

J. Gardiner et al.

Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat anal-
ysis framework: Supporting the elicitation and fulfillment of privacy requirements.
Requir. Eng. 16(1), 3-32 (Mar 2011). https://doi.org/10.1007/s00766-010-0115-7,
https://doi.org/10.1007/s00766-010-0115-7

Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
Peer-to-Peer Systems. pp. 251-260. Springer Berlin Heidelberg, Berlin, Heidelberg
(2002)

Gardiner, J., Craggs, B., Green, B., Rashid, A.: Oops I did it again:
Further adventures in the land of ics security testbeds. In: Proceedings
of the ACM Workshop on Cyber-Physical Systems Security & Privacy. p.
75-86. CPS-SPC’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3338499.3357355, https://doi.org/10.
1145/3338499.3357355

Golomb, S.: Mthematical models - Uses and Limitations. In: Aeronautical Journal
(1968)

Google, Apple: Exposure notifications: Helping fight covid-19, https://wuw.google.
com/covid19/exposurenotifications/, accessed June 2021

Green, B., Lee, A., Antrobus, R., Roedig, U., Hutchison, D., Rashid, A.: Pains,
gains and PLCs: Ten lessons from building an industrial control systems testbed for
security research. In: 10th USENIX Workshop on Cyber Security Experimentation
and Test (CSET 17). USENIX Association, Vancouver, BC (Aug 2017), https://
www.usenix.org/conference/cset17/workshop-program/presentation/green
Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99-111 (Jan 1991). https://doi.org/10.1007/BF00196791, https://doi.org/
10.1007/BF00196791

Hoepman, J.H.: Privacy Design Strategies (The Little Blue Book). Radbound
University (2019)

Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem, p. 203—-226.
Association for Computing Machinery, New York, NY, USA (2019), https://doi.
org/10.1145/3335772.3335936

Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for re-
search and training on ics security. In: 2016 International Workshop on Cyber-
physical Systems for Smart Water Networks (CySWater). pp. 31-36 (2016).
https://doi.org/10.1109/CySWater.2016.7469060

Nick Triggle: Care.data: How did it go so wrong?, https://www.bbc.co.uk/news/
health-26259101, accessed June 2021

Signal Foundation: Speak freely, https://signal.org/en/, accessed June 2021
Solove, D.J.: The myth of the privacy paradox. George Washington Law Review
89, 1 (2021)

Wang, L., Kangasharju, J.: Real-world sybil attacks in Bittorrent mainline DHT.
In: 2012 IEEE Global Communications Conference (GLOBECOM). pp. 826-832
(2012). https://doi.org/10.1109/GLOCOM.2012.6503215

Wen, H., Zhao, Q., Lin, Z., Xuan, D., Shroff, N.: A study of the privacy of COVID-19
Contact Tracing Apps. In: Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N.
(eds.) Security and Privacy in Communication Networks. pp. 297-317. Springer
International Publishing, Cham (2020)

Yeh, L.Y., Lu, P.J., Huang, S.H., Huang, J.L.: Sochain: A privacy-
preserving DDoS data exchange service over SOC Consortium Blockchain.
IEEE Transactions on Engineering Management 67(4), 1487-1500 (2020).
https://doi.org/10.1109/TEM.2020.2976113

